In this golden age of rapid development surgeons realized that AI could contribute to healthcare in all aspects, especially in surgery. The aim of the study will incorporate the use of Convolutional Neural Network and Constrained Local Models (CNN-CLM) which can make improvement for the assessment of Laparoscopic Cholecystectomy (LC) surgery not only bring opportunities for surgery but also bring challenges on the way forward by using the edge cutting technology. The problem with the current method of surgery is the lack of safety and specific complications and problems associated with safety in each laparoscopic cholecystectomy procedure. When CLM is utilize into CNN models, it is effective at predicting time series tasks like identifying the sequence of events in the Laparoscopic Cholecystectomy (LC). This study will contribute to show the effectiveness of CNN-CLM approach on laparoscopic cholecystectomy, which will frequently focus on surgical computer vision analysis of surgical safety and related applications. The method of study is deep learning based CNN-CLM to better detect nominal safety as well as unsafe practices around the critical view of safety and AI-based grading scale. The general design flow of AI-recognition of surgical safety is firstly collecting safety surgical videos for frame segmenting and phase according to the image context by surgeon reviewer by CNN-CLM. For this advance research, the dataset is splatted into three main parts where 70% of which is used for training, 15% of which is used for testing and the rest for the cross validation, to achieve the accuracy up to 98.79% of this specific research. For result part, different metrics of CNN-CLM to evaluate the performance of the proposed model of safety in surgery. The study uses one of the top three performing methods CNN-CLM for the evaluation yields and anatomical structures in laparoscopic cholecystectomy surgery.
In this paper, an algorithm is suggested to train a single layer feedforward neural network to function as a heteroassociative memory. This algorithm enhances the ability of the memory to recall the stored patterns when partially described noisy inputs patterns are presented. The algorithm relies on adapting the standard delta rule by introducing new terms, first order term and second order term to it. Results show that the heteroassociative neural network trained with this algorithm perfectly recalls the desired stored pattern when 1.6% and 3.2% special partially described noisy inputs patterns are presented.
Wireless Body Area Network (WBAN) is a tool that improves real-time patient health observation in hospitals, asylums, especially at home. WBAN has grown popularity in recent years due to its critical role and vast range of medical applications. Due to the sensitive nature of the patient information being transmitted through the WBAN network, security is of paramount importance. To guarantee the safe movement of data between sensor nodes and various WBAN networks, a high level of security is required in a WBAN network. This research introduces a novel technique named Integrated Grasshopper Optimization Algorithm with Artificial Neural Network (IGO-ANN) for distinguishing between trusted nodes in WBAN networks by means of a classifica
... Show MoreThe Next-generation networks, such as 5G and 6G, need capacity and requirements for low latency, and high dependability. According to experts, one of the most important features of (5 and 6) G networks is network slicing. To enhance the Quality of Service (QoS), network operators may now operate many instances on the same infrastructure due to configuring able slicing QoS. Each virtualized network resource, such as connection bandwidth, buffer size, and computing functions, may have a varied number of virtualized network resources. Because network resources are limited, virtual resources of the slices must be carefully coordinated to meet the different QoS requirements of users and services. These networks may be modifie
... Show MoreThe treatment of migraine headache targets the neurovascular mechanism and involves the use of serotonin receptor antagonists. Some of these drugs are used for the treatment of acute attacks; while others are effective as prophylactic measures to decrease the duration and frequency of attacks. Pizotifen, a 5-HTA antagonist, is one of the prophylactic drugs for which the clinical use resulted in low outcomes in reducing migraine symptoms. Melatonin, a serotonin derived neurohormone, was reported to exert many functions like sleep induction, anti-inflammatory, neurovascular regulation, cytoprotection and modulation of neurotransmitter release. In the view of the involvement of serotonin in the pathophysiology of migraine a
... Show MoreABSTRACT
The study aimed to evaluate the information label of some local pickle products and estimate sodium benzoate therein. 85 samples of locally made pickles were collected from Baghdad city markets and randomly from five different areas in Baghdad it included (Al-Shula, Al-Bayaa, Al-Nahrawan, Al-Taji, and Abu Ghraib), which were divided into groups P1, P2, P3, P4 and P5, respectively, according to those areas, samples information label was scanned and compared with the Iraqi standard specification for the information card of packaged and canned food IQS 230, the results showed that 25.9% of the samples were devoid of the indication card informa
... Show MoreThis study was conducted to evaluate the bottled water quality for the six-producing companies in Baghdad city, where selected six brands which are the most marketed in the Iraqi market, especially in Baghdad, where taking the proper amount of bottled water in September 2015 and included the studied characteristics (EC , pH ,TDS, Turbidity, Ca+2, Mg+2, Cl-, No3-, So4-2, HCO3-, Na+ and K+) in addition to the total population of bacteria aerobic and coliform, and compare the results with the standard specifications of the Iraqi and the World Health Organization (WHO), as well as to compare the results of sampling specifications mentioned on the packaging by the producing companies. The results showed the presence of high significant differ
... Show MoreThere is a great operational risk to control the day-to-day management in water treatment plants, so water companies are looking for solutions to predict how the treatment processes may be improved due to the increased pressure to remain competitive. This study focused on the mathematical modeling of water treatment processes with the primary motivation to provide tools that can be used to predict the performance of the treatment to enable better control of uncertainty and risk. This research included choosing the most important variables affecting quality standards using the correlation test. According to this test, it was found that the important parameters of raw water: Total Hardn
The automatic estimation of speaker characteristics, such as height, age, and gender, has various applications in forensics, surveillance, customer service, and many human-robot interaction applications. These applications are often required to produce a response promptly. This work proposes a novel approach to speaker profiling by combining filter bank initializations, such as continuous wavelets and gammatone filter banks, with one-dimensional (1D) convolutional neural networks (CNN) and residual blocks. The proposed end-to-end model goes from the raw waveform to an estimated height, age, and gender of the speaker by learning speaker representation directly from the audio signal without relying on handcrafted and pre-computed acou
... Show More