Digital image manipulation has become increasingly prevalent due to the widespread availability of sophisticated image editing tools. In copy-move forgery, a portion of an image is copied and pasted into another area within the same image. The proposed methodology begins with extracting the image's Local Binary Pattern (LBP) algorithm features. Two main statistical functions, Stander Deviation (STD) and Angler Second Moment (ASM), are computed for each LBP feature, capturing additional statistical information about the local textures. Next, a multi-level LBP feature selection is applied to select the most relevant features. This process involves performing LBP computation at multiple scales or levels, capturing textures at different
... Show MoreAdvertisements containing images of women represent one of the most controversial topics of the advertising industry and has an impact on people and trends. This study aims to determine the typical mental image of women purveyed through visual advertising in the Arab media. It also aims to find out whether these advertisements portray women positively or negatively, in addition to investigating the reasons for the recent negative portrayal of women in commercials. The study adopted a descriptive-analytical approach to achieve these objectives. The results indicate that advertising designs that carry images of women displayed in the Arab media create strong mental images. Repetition reinforces these images, and they emphasize the concept
... Show MoreComputer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes
... Show MoreThis research (The families of martyrs, victims of terrorism, war operations and military mistakes opinion about Al- Shuhada`a Establishment ) came to know and diagnose the mental image the martyrs victims of terrorism carries about the performance of Al- Shuhada`a Establishment and the services it provides to them, and to monitor the contents of that image that they had regarding their privileges and rights that Al- Shuhada`a Establishment supposed to give it to them, according to their law. The research problem was represented by the main question: (What is the image of Al- Shuhada`a Establishment among the families of martyrs, victims of terrorism, war operations and military mistakes), and this research was classified within the d
... Show MoreST Alawi, NA Mustafa, Al-Mustansiriyah Journal of Science, 2013
Objective: To assess the functional outcome, time to union, shoulder pain, blood loss, operative time, iatrogenic radial nerve injury, hospitalization, and infection. Methodology: It is a prospective randomized study on 30 patients with mid-shaft humerus fracture according to AO classification (1.2A1, 2, 3 and 1,2B) with functioning radial nerve. They were randomly dividing into two groups. Group A were treated by a closed antegrade interlocking nail, and group B treated by open reduction and locked compression plate fixation. The follow-up was up to 6 months, including time to union, shoulder pain, intraoperative blood loss, operative time and iatrogenic radial nerve injury. Functional outcome was assessed by quick DASH score. Resu
... Show MoreIn the image processing’s field and computer vision it’s important to represent the image by its information. Image information comes from the image’s features that extracted from it using feature detection/extraction techniques and features description. Features in computer vision define informative data. For human eye its perfect to extract information from raw image, but computer cannot recognize image information. This is why various feature extraction techniques have been presented and progressed rapidly. This paper presents a general overview of the feature extraction categories for image.
In this paper, the goal of proposed method is to protect data against different types of attacks by unauthorized parties. The basic idea of proposed method is generating a private key from a specific features of digital color image such as color (Red, Green and Blue); the generating process of private key from colors of digital color image performed via the computing process of color frequencies for blue color of an image then computing the maximum frequency of blue color, multiplying it by its number and adding process will performed to produce a generated key. After that the private key is generated, must be converting it into the binary representation form. The generated key is extracted from blue color of keyed image then we selects a c
... Show More