Beta thalassemia major (BTM) is a genetic disorder that has been linked to an increased risk of contracting blood-borne viral infections, primarily due to the frequent blood transfusions required to manage the condition. One such virus that can be transmitted through blood is the Human Parvovirus B19 (B19V). The aim of this study was to investigate the frequency and molecular detection of B19V. This study included 60 blood donors as controls and 120 BTM patients. B19V was identified by serology, which measured B19-IgG and B19-IgM antibodies. Nested Polymerase Chain Reaction (nPCR) was employed to target the VP1/VP2 structural proteins. The results showed that B19V seropositivity represents 27.5% (33 out of 120) in BTM patients, and only 8 out of 60 subjects represents (13.3%) in the control group (P-value 0.078). Notably, male patients exhibited a significantly higher prevalence of B19-IgM and B19-IgG antibodies, with 32% and 24% of males testing positive, respectively, compared to female patients. Elevated levels of Aspartate and Alanine Transaminase were observed with values of 51.94±50.09 and 46.81±50.20, respectively. Additionally, nPCR analysis detected B19V DNA in 4.16% (5 out of 120) of BTM patients, while no positive results were detected in the control group. Screening the blood and blood products for the virus in high-risk group can considerably reduce the prevalence. Preventive measures are required in such vulnerable population.
The research acquires its importance by motivating the behavioural side of the employees to apply modern technology in the work, because of its great importance in increasing the efficiency of employees’ performance and excellence. The research was based on two main hypotheses to show the relationship and impact between the variables through the adoption of a questionnaire to collect data and information related to the research, which consisted of (50) people from administrators working at different levels, based on personal interviews and field visits to collect research data. The data collection process was subjected to statistical analysis using the statistical program (SPSS) (Statistical package for social science) to reach
... Show MoreSignificant advances in the automated glaucoma detection techniques have been made through the employment of the Machine Learning (ML) and Deep Learning (DL) methods, an overview of which will be provided in this paper. What sets the current literature review apart is its exclusive focus on the aforementioned techniques for glaucoma detection using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines for filtering the selected papers. To achieve this, an advanced search was conducted in the Scopus database, specifically looking for research papers published in 2023, with the keywords "glaucoma detection", "machine learning", and "deep learning". Among the multiple found papers, the ones focusing
... Show MoreDetermining the face of wearing a mask from not wearing a mask from visual data such as video and still, images have been a fascinating research topic in recent decades due to the spread of the Corona pandemic, which has changed the features of the entire world and forced people to wear a mask as a way to prevent the pandemic that has calmed the entire world, and it has played an important role. Intelligent development based on artificial intelligence and computers has a very important role in the issue of safety from the pandemic, as the Topic of face recognition and identifying people who wear the mask or not in the introduction and deep education was the most prominent in this topic. Using deep learning techniques and the YOLO (”You on
... Show MoreWith the growth of mobile phones, short message service (SMS) became an essential text communication service. However, the low cost and ease use of SMS led to an increase in SMS Spam. In this paper, the characteristics of SMS spam has studied and a set of features has introduced to get rid of SMS spam. In addition, the problem of SMS spam detection was addressed as a clustering analysis that requires a metaheuristic algorithm to find the clustering structures. Three differential evolution variants viz DE/rand/1, jDE/rand/1, jDE/best/1, are adopted for solving the SMS spam problem. Experimental results illustrate that the jDE/best/1 produces best results over other variants in terms of accuracy, false-positive rate and false-negative
... Show MoreSeveral Intrusion Detection Systems (IDS) have been proposed in the current decade. Most datasets which associate with intrusion detection dataset suffer from an imbalance class problem. This problem limits the performance of classifier for minority classes. This paper has presented a novel class imbalance processing technology for large scale multiclass dataset, referred to as BMCD. Our algorithm is based on adapting the Synthetic Minority Over-Sampling Technique (SMOTE) with multiclass dataset to improve the detection rate of minority classes while ensuring efficiency. In this work we have been combined five individual CICIDS2017 dataset to create one multiclass dataset which contains several types of attacks. To prove the eff
... Show MoreDeepfake is a type of artificial intelligence used to create convincing images, audio, and video hoaxes and it concerns celebrities and everyone because they are easy to manufacture. Deepfake are hard to recognize by people and current approaches, especially high-quality ones. As a defense against Deepfake techniques, various methods to detect Deepfake in images have been suggested. Most of them had limitations, like only working with one face in an image. The face has to be facing forward, with both eyes and the mouth open, depending on what part of the face they worked on. Other than that, a few focus on the impact of pre-processing steps on the detection accuracy of the models. This paper introduces a framework design focused on this asp
... Show More