Objective: To conduct a standardized method for cavity preparation on the palatal surface of rat maxillary molars and to introduce a standardized method for tooth correct alignment within the specimen during the wax embedding procedure to better detect cavity position within the examined slides. Materials and methods: Six male Wistar rats, aged 4-6 weeks, were used. The maxillary molars of three animals were sectioned in the frontal plane to identify the thickness of hard tissue on the palatal surface of the first molar which was (250-300µm). The end-cutting bur (with a cutting head diameter of 0.2mm) was suitable for preparing a dentinal cavity (70-80µm) depth. Cavity preparation was then performed using the same bur on the tooth surface in the other three animals. Rats are then euthanized before dissecting, fixing, and demineralizing the teeth. For better alignment of teeth samples during the waxing procedure, K-file endodontic instrument size #8 was dipped in Indian ink. The file tip was inserted on the jaw bone at the buccal side of the tooth in a region opposed to the prepared cavity on the palatal side. Moreover, a small Dycal applicator instrument was used to mark the jaw bone on the mesial side of teeth samples as an orientation for the cutting surface. Results: Well-defined sections were obtained with a clear cavity extension within dentin and without any signs of pulp exposure in all samples. Conclusion: This pilot was conducted to perform an easy procedure for cavity preparation in rat molar teeth to obtain a clear histopathological section.
During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreThis paper deals with the Magnetohydrodynyamic (Mill)) flow for a viscoclastic fluid of the generalized Oldroyd-B model. The fractional calculus approach is used to establish the constitutive relationship of the non-Newtonian fluid model. Exact analytic solutions for the velocity and shear stress fields in terms of the Fox H-function are obtained by using discrete Laplace transform. The effect of different parameter that controlled the motion and shear stress equations are studied through plotting using the MATHEMATICA-8 software.
The dynamical behavior of a two-dimensional continuous time dynamical system describing by a prey predator model is investigated. By means of constructing suitable Lyapunov functional, sufficient condition is derived for the global asymptotic stability of the positive equilibrium of the system. The Hopf bifurcation analysis is carried out. The numerical simulations are used to study the effect of periodic forcing in two different parameters. The results of simulations show that the model under the effects of periodic forcing in two different parameters, with or without phase difference, could exhibit chaotic dynamics for realistic and biologically feasible parametric values.
In the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial
... Show MoreIn this paper, a compartmental differential epidemic model of COVID-19 pandemic transmission is constructed and analyzed that accounts for the effects of media coverage. The model can be categorized into eight distinct divisions: susceptible individuals, exposed individuals, quarantine class, infected individuals, isolated class, infectious material in the environment, media coverage, and recovered individuals. The qualitative analysis of the model indicates that the disease-free equilibrium point is asymptotically stable when the basic reproduction number R0 is less than one. Conversely, the endemic equilibrium is globally asymptotically stable when R0 is bigger than one. In addition, a sensitivity analysis is conducted to determine which
... Show MoreIn this study, we set up and analyze a cancer growth model that integrates a chemotherapy drug with the impact of vitamins in boosting and strengthening the immune system. The aim of this study is to determine the minimal amount of treatment required to eliminate cancer, which will help to reduce harm to patients. It is assumed that vitamins come from organic foods and beverages. The chemotherapy drug is added to delay and eliminate tumor cell growth and division. To that end, we suggest the tumor-immune model, composed of the interaction of tumor and immune cells, which is composed of two ordinary differential equations. The model’s fundamental mathematical properties, such as positivity, boundedness, and equilibrium existence, are exami
... Show MoreEach project management system aims to complete the project within its identified objectives: budget, time, and quality. It is achieving the project within the defined deadline that required careful scheduling, that be attained early. Due to the nature of unique repetitive construction projects, time contingency and project uncertainty are necessary for accurate scheduling. It should be integrated and flexible to accommodate the changes without adversely affecting the construction project’s total completion time. Repetitive planning and scheduling methods are more effective and essential. However, they need continuous development because of the evolution of execution methods, essent
Abstract
The research aimed to test the relationship between the size of investment allocations in the agricultural sector in Iraq and their determinants using the Ordinary Least Squares (OLS) method compared to the Error Correction Model (ECM) approach. The time series data for the period from 1990 to 2021 was utilized. The analysis showed that the estimates obtained using the ECM were more accurate and significant than those obtained using the OLS method. Johansen's test indicated the presence of a long-term equilibrium relationship between the size of investment allocations and their determinants. The results of th
... Show More