This work aimed to study the effect of laser surface treatment on the mechanical characteristics and corrosion behaviour of grey cast iron type A159. Many technical applications used conventional surface treatment, but laser surface hardening has recently been used to enhance the surface properties of many alloys. The mechanical characteristics, including microstructure, microhardness, and wear resistance of A159 grey cast iron, were studied, in addition to corrosion behaviour. The experimental laser parameters in this work were 0.9, 1.2, and 1.5 KW power with continuous wave carbon dioxide lasers with scanning speeds of 10 and 12 mm/s were used. The results found that phase-transitional alterations in microstructure were influenced by laser therapy. Also, the microhardness increased with increasing power, with the maximum reaching approximately 950 HV while the base metal has an average of approximately 260 HV. Also, we found the power laser increased corrosion resistance by lowering the corrosion rate (CR) from 21.10 for the untreated sample to 1.02 (m.p.y.), additionally, corrosion protection efficiency (CPE) increased to 95.27 percent.
A new series of Fe (III) , Co (II) , Ni (II) and Cu (II) complexes of the Schiff base, 5 (2-hydroxy benzylidine) -2-thio ether -1, 3, 4-thiadiazole were prepared and characterized .The imine behaves as a bidentate. The nature of bonding and the stereochemistry of the complexes were deduced from metal analyses, infrared, electronic spectra,magnetic susceptibility and conductivity measurements, an octahedral geometry was suggested for all complexes except the copper complex has a square planar geometry .preliminary in vitro tests for antimicrobial activity show that all the prepared compounds except iron complex display good activity to gram positive Staphelococcus aures and gram negative Escherchia coli.
S Khalifa E, AM Sabeeh A, AN Adil A, AW Ghassan H…, 2007
In recent decades, there has been increasing interest in wastewater treatment because of its direct impact on the environment and public health. Over time, other forms of treatment have been developed and modified, including extended aeration. This process is included in the suspended growth system. In this paper, a comparative study was conducted between the efficiency of the extended aeration plant and that of the trickling filter plant in removal of BOD and COD. The method of comparison was done by knowing the value of the pollutant before and after the treatment and then extract the removal ratio of each pollutant within each plant. The results showed that the percentage of removal of BOD in the trickling filte
... Show MoreBackground: Dental implant considers a unique treatment option for the replacement of missing dentition. The new trend of implants is looking for materials which accelerate bone formation in bone implant interface and enhance osseointegration to provide immediate loading directly after placement and decrease the time period which is disturbs patients and uncomfortable. The aim of the study was to evaluate the effect of nano zirconium oxide (ZrO2) and nano hydroxyapatite (Hap) mixture coating of screw shaped commercially pure titanium (cpTi) implants on bond strength at the bone implant interface with torque removal test and histological analysis in comparison with non coated implants. Materials and methods: Forty screws were machined from c
... Show MoreIn this paper, the solar surface magnetic flux transport has been simulated by solving the diffusion–advection equation utilizing numerical explicit and implicit methods in 2Dsurface. The simulation was used to study the effect of bipolar tilted angle on the solar flux distribution with time. The results show that the tilted angle controls the magnetic distribution location on the sun’s surface, especially if we know that the sun’s surface velocity distribution is a dependent location. Therefore, the tilted angle parameter has distribution influence.
Rate of penetration plays a vital role in field development process because the drilling operation is expensive and include the cost of equipment and materials used during the penetration of rock and efforts of the crew in order to complete the well without major problems. It’s important to finish the well as soon as possible to reduce the expenditures. So, knowing the rate of penetration in the area that is going to be drilled will help in speculation of the cost and that will lead to optimize drilling outgoings. In this research, an intelligent model was built using artificial intelligence to achieve this goal. The model was built using adaptive neuro fuzzy inference system to predict the rate of penetration in
... Show More