Preferred Language
Articles
/
gxb5j4oBVTCNdQwCZZ8t
Keratoconus Severity Detection From Elevation, Topography and Pachymetry Raw Data Using a Machine Learning Approach
...Show More Authors

Scopus Clarivate Crossref
View Publication
Publication Date
Sun Mar 30 2008
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Preparation of Zeolite Type 13X from Locally Available Raw Materials
...Show More Authors

The aim of this work was to prepare zeolite type 13X from locally available kaolin and to study the effects of using some binding materials through the process of agglomeration of this zeolite. This study was focused on using kaolin binder in different weight percents (10,15,25,35 and 45%).Physical and mechanical properties of the agglomerates such as porosity , apparent density , pore volume, crushing strength , loss on attrition , surface area and finally the adsorption capacity had been measured and evaluated .The preparation step was achieved by mixing the reactants consisting of metakaolin , source of silica as ( sodium trisilicate ) and sodium hydroxide . The conditions was temperature of 70° C and time of mixing as 8, 10,24,34,50

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 30 2014
Journal Name
Al-kindy College Medical Journal
Unstable Angina /Non ST Elevation Myocardial Infarction: Frequency of Conventional Risk Factors; TIMI Risk Score, and Their Impact On Angiographic Data
...Show More Authors

Background: Appreciation of the crucial role of risk factors in the development of coronary artery disease (CAD) is one of the most significant advances in the understanding of this important disease. Extensive epidemiological research has established cigarette smoking, diabetes, hyperlipidemia, and hypertension as independent risk factors for CADObjective: To determine the prevalence of the 4 conventional risk factors(cigarette smoking, diabetes, hyperlipidemia, and hypertension) among patients with CAD and to determine the correlation of Thrombolysis in Myocardial Infarction (TIMI) risk score with the extent of coronary artery disease (CAD) in patients with unstable angina /non ST elevation myocardial infarction (UA/NSTEMI).Methods: We

... Show More
View Publication Preview PDF
Publication Date
Fri Sep 26 2025
Journal Name
Iraqi Journal Of Science
Intrusion Detection Approach Based on DNA Signature
...Show More Authors

View Publication
Publication Date
Sun Jun 30 2013
Journal Name
Al-khwarizmi Engineering Journal
Estimated Outlet Temperatures in Shell-and-Tube Heat Exchanger Using Artificial Neural Network Approach Based on Practical Data
...Show More Authors

The objective of this study is to apply Artificial Neural Network for heat transfer analysis of shell-and-tube heat exchangers widely used in power plants and refineries. Practical data was obtained by using industrial heat exchanger operating in power generation department of Dura refinery. The commonly used Back Propagation (BP) algorithm was used to train and test networks by divided the data to three samples (training, validation and testing data) to give more approach data with actual case. Inputs of the neural network include inlet water temperature, inlet air temperature and mass flow rate of air. Two outputs (exit water temperature to cooling tower and exit air temperature to second stage of air compressor) were taken in ANN.

... Show More
View Publication Preview PDF
Publication Date
Tue Nov 19 2024
Journal Name
Aip Conference Proceedings
CT scan and deep learning for COVID-19 detection
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Fri Apr 14 2023
Journal Name
Journal Of Big Data
A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications
...Show More Authors
Abstract<p>Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for</p> ... Show More
View Publication Preview PDF
Scopus (460)
Crossref (455)
Scopus Clarivate Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Comparative Immunology, Microbiology And Infectious Diseases
Drug resistance and virulence traits of Acinetobacter baumannii from Turkey and chicken raw meat
...Show More Authors

View Publication
Scopus (54)
Crossref (41)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Technologies And Materials For Renewable Energy, Environment And Sustainability: Tmrees20
Change detection of the land cover for three decades using remote sensing data and geographic information system
...Show More Authors

View Publication
Crossref (3)
Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Journal Of Engineering
An Empirical Investigation on Snort NIDS versus Supervised Machine Learning Classifiers
...Show More Authors

With the vast usage of network services, Security became an important issue for all network types. Various techniques emerged to grant network security; among them is Network Intrusion Detection System (NIDS). Many extant NIDSs actively work against various intrusions, but there are still a number of performance issues including high false alarm rates, and numerous undetected attacks. To keep up with these attacks, some of the academic researchers turned towards machine learning (ML) techniques to create software that automatically predict intrusive and abnormal traffic, another approach is to utilize ML algorithms in enhancing Traditional NIDSs which is a more feasible solution since they are widely spread. To upgrade t

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Tue Jun 23 2020
Journal Name
Baghdad Science Journal
Anomaly Detection Approach Based on Deep Neural Network and Dropout
...Show More Authors

   Regarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct

... Show More
View Publication Preview PDF
Scopus (25)
Crossref (11)
Scopus Clarivate Crossref