Target tracking is a significant application of wireless sensor networks (WSNs) in which deployment of self-organizing and energy efficient algorithms is required. The tracking accuracy increases as more sensor nodes are activated around the target but more energy is consumed. Thus, in this study, we focus on limiting the number of sensors by forming an ad-hoc network that operates autonomously. This will reduce the energy consumption and prolong the sensor network lifetime. In this paper, we propose a fully distributed algorithm, an Endocrine inspired Sensor Activation Mechanism for multi target-tracking (ESAM) which reflecting the properties of real life sensor activation system based on the information circulating principle in the endocrine system of the human body. Sensor nodes in our network are secreting different hormones according to certain rules. The hormone level enables the nodes to regulate an efficient sleep and wake up cycle of nodes to reduce the energy consumption. It is evident from the simulation results that the proposed ESAM in autonomous sensor network exhibits a stable performance without the need of commands from a central controller. Moreover, the proposed ESAM generates more efficient and persistent results as compared to other algorithms for tracking an invading object.
Problem solving methods and mechanisms contribute to facilitating human life by providing tools to solve simple and complex daily problems. These mechanisms have been essential tools for professional designers and design students in solving design problems.
This research dealt with one of those mechanisms, which is the (the substance-field model model), as it has been mentioning that this mechanism is characterized by the difficulty of its application, which formed the main research problem. In home gardens (the sub-problem of research), an analysis of this problem was applied and then a solution was found to address it. The researcher used the 3dsmax program to implement the proposed design.
The most important research res
In order to select the optimal tracking of fast time variation of multipath fast time variation Rayleigh fading channel, this paper focuses on the recursive least-squares (RLS) and Extended recursive least-squares (E-RLS) algorithms and reaches the conclusion that E-RLS is more feasible according to the comparison output of the simulation program from tracking performance and mean square error over five fast time variation of Rayleigh fading channels and more than one time (send/receive) reach to 100 times to make sure from efficiency of these algorithms.
This paper describes the application of consensus optimization for Wireless Sensor Network (WSN) system. Consensus algorithm is usually conducted within a certain number of iterations for a given graph topology. Nevertheless, the best Number of Iterations (NOI) to reach consensus is varied in accordance with any change in number of nodes or other parameters of . graph topology. As a result, a time consuming trial and error procedure will necessary be applied
to obtain best NOI. The implementation of an intellig ent optimization can effectively help to get the optimal NOI. The performance of the consensus algorithm has considerably been improved by the inclusion of Particle Swarm Optimization (PSO). As a case s
The aim of this study is to develop a novel framework for managing risks in smart supply chains by enhancing business continuity and resilience against potential disruptions. This research addresses the growing uncertainty in supply chain environments, driven by both natural phenomena-such as pandemics and earthquakes—and human-induced events, including wars, political upheavals, and societal transformations. Recognizing that traditional risk management approaches are insufficient in such dynamic contexts, the study proposes an adaptive framework that integrates proactive and remedial measures for effective risk mitigation. A fuzzy risk matrix is employed to assess and analyze uncertainties, facilitating the identification of disr
... Show MoreAbstract:
The main objective of the research is to build an optimal investment portfolio of stocks’ listed at the Iraqi Stock Exchange after employing the multi-objective genetic algorithm within the period of time between 1/1/2006 and 1/6/2018 in the light of closing prices (43) companies after the completion of their data and met the conditions of the inspection, as the literature review has supported the diagnosis of the knowledge gap and the identification of deficiencies in the level of experimentation was the current direction of research was to reflect the aspects of the unseen and untreated by other researchers in particular, the missing data and non-reversed pieces the reality of trading at the level of compani
... Show More