It was aimed to investigate the compressibility, compactibility, powder flow and tablet disintegration of a new excipient comprising magnesium (Mg) silicate co-processed (5%–85% w/w) onto chitin, microcrystalline cellulose (MCC) and starch as the hydrophilic polymers of interest. Initially, the mechanism of tablet disintegration was studied by measuring water infiltration rate, moisture sorption, swelling capacity and hydration ability. Moreover, the powders compression behavior was carried out by applying Kawakita model of compression analysis in addition to porosity and radial tensile strength measurements. In vitro drug release of compacts made of 400 mg ibuprofen and 300 mg of the hydrophilic polymers containing 30% w/w Mg silicate co-precipitate was investigated in phosphate buffer (pH 7.8). This work demonstrated that the incorporation of Mg silicate to the hydrophilic polymers lead to the improvement of powder flowability, compactibility, stability (with regard to storage conditions), compacts crushing strength, and disintegration time in addition to faster drug release. The overall findings are practically advantageous in the context of finding a low cost and multifunctional co-processed excipient of natural origins.
Amorphization of drug has been considered as an attractive approach in improving drug solubility and bioavailability. Unlike their crystalline counterparts, amorphous materials lack the long-range order of molecular packing and present the highest energy state of a solid material. Co-amorphous systems (CAM) are an innovative formulation technique by where the amorphous drugs are stabilized via powerful intermolecular interactions by means of a low molecular co-former.
This review highlights the different approaches in the preparation of co-amorphous drug delivery system, the proper selection of the co-formers. In addition, the recent advances in characterization, Industrial scale and formulation will be discussed.
This study describes preparation a new series of tetra-dentate N2O2 dinuclear complexes Cr(III), Co(II)and Cu(II) of the Schiff base 2-[5-(2-hydroxy-phenyl)-1,3,4-thiadiazol-2-ylimino]-methyl-naphthalen-1-ol], (LH2) derived from 1-hydroxy-naphthalene-2-carbaldehyde with 2-amino-5-(2-hydroxy-phenyl)-1,3,4-thiadiazole. These ligands were characterized by FT-IR, UV-Vis, Mass spectra, elemental analysis, and 1H-NMR. All prepared complexes have been characterized by conductance measurement, magnetic susceptibility, electronic spectra, infrared spectrum, thermal Analysis (TGA), and metal analysis by atomic absorption. The stoichiometry of metal to ligand, magnetic susceptibility, and electronic spectra measurements show an octahedral geom
... Show MorePolyvinal alcohol was Cynoethylated , complex compound with Iodin in presence of Cu++ ions were preparated and their ultra violet (U.V) and infra red( IR) spectra were investigated. The prepared derivative and complexes were evaluated as antibacterial and antifungal agents following the standard dilution method. MIC(minimum inhibitory concentration) for each polymer using ten types of gram + ve and gram _ ve bacteria were determinated in addition to three types of fungi. The results obtainded showed that MIC, s were around 0.0011 × 103 molar for different polymetric derivatives tried.
Preparation and Identification of some new Pyrazolopyrin derivatives and their Polymerizations study
The chemical bath deposition technique (CBD) is considered the cheapest and easiest compared with other deposition techniques. However, it is highly sensitive to effective parameter deposition values such as pH, temperature, and so on. The pH value of the reaction solution has a direct impact on both the nucleation and growth rate of the film. Consequently, this study presents a novel investigation into the effect of a precise change. in the pH reaction solution value on the structural, morphological, and photoresponse characteristics of tin monosulphide (SnS) films. The films were grown on a flexible polyester substrate with pH values of 7.1, 7.4, and 7.7. The X-ray diffraction patterns of the grown films at pH 7.1 and 7.4 confirmed
... Show MoreReacts compound C6H5PO2Cl2 with Secretary secondary R2NH at room temperature by Mulet 2:1 and using chloroform as a solvent in dry conditions to form composite 2HCl and the interaction of compound solution of sodium hydroxide and potassium by Mulet 3:1 salt was prepared