An impressed current cathodic protection system (ICCP) requires measurements of extremely low-level quantities of its electrical characteristics. The current experimental work utilized the Adafruit INA219 sensor module for acquiring the values for voltage, current, and power of a default load, which consumes quite low power and simulates an ICCP system. The main problem is the adaptation of the INA219 sensor to the LabVIEW environment due to the absence of the library of this sensor. This work is devoted to the adaptation of the Adafruit INA219 sensor module in the LabVIEW environment through creating, developing, and successfully testing a Sub VI to be ready for employment in an ICCP system. The sensor output was monitored with an Arduino Uno microcontroller and the LabVIEW Linx firmware toolkit. Pulse Width Modulation (PWM) technique, which ranges from 0% to 100%, was applied by the Arduino to supply the l298N voltage driver in order to regulate the voltage input to the load. A moving average filter was employed to measure the ripple voltage averaging, and a median filter was utilized to stabilize the readings. A passive low-pass filter circuit smoothed the PWM voltage before supplying the load. The results from the MATLAB-Simulink environment showed a cut-off frequency of 2.33 Hz, ripple voltage peak to peak was 41.1 mV and a settling time of 0.157 seconds. The calibrated results of the INA219 module sensor showed an absolute voltage inaccuracy of around 2.3% at full scale. In addition, an absolute error in the current of 2.2% at 25 mA shows a gradual increase as the current increases to 7% at 43 mA, while the highest absolute error for the full scale of power was at 5.8%. The obtained measurements were highly precise, and the values of the coefficient of variation were 0.36 %, 0.28% and 0.17% for the voltage, current, and power, respectively.
Soil pH is one of the main factors to consider before undertaking any agricultural operation. Methods for measuring soil pH vary, but all traditional methods require time, effort, and expertise. This study aimed to determine, predict, and map the spatial distribution of soil pH based on data taken from 50 sites using the Kriging geostatistical tool in ArcGIS as a first step. In the second step, the Support Vector Machines (SVM) machine learning algorithm was used to predict the soil pH based on the CIE-L*a*b values taken from the optical fiber sensor. The standard deviation of the soil pH values was 0.42, which indicates a more reliable measurement and the data distribution is normal.
Electrochemical oxidation in the presence of sodium chloride used for removal of phenol and any other organic by products formed during the electrolysis by using MnO2/graphite electrode. The performance of the electrode was evaluated in terms fraction of phenol and the formed organic by products removed during the electrolysis process. The results showed that the electrochemical oxidation process was very effective in the removal of phenol and the other organics, where the removal percentage of phenol was 97.33%, and the final value of TOC was 6.985 ppm after 4 hours and by using a speed of rotation of the MnO2 electrode equal to 200 rpm.
Superconducting compound Bi2Sr2-xYxCa2Cu3O10+δ were Synthesized by method of solid state reaction, at 1033 K for 160 hours temperature of the sintering at normal atmospheric pressure where substitutions Yttrium oxide with Strontium. When Y2O3 concentration (0.0, 0.1, 0.2, 0.3, 0.4 and 0.5). All specimens of Bi2Sr2Ca2Cu3O10+δ superconducting compounds were examined. The resistivity of electrical was checked by the four point probe technique, It was found th
Test anxiety for intermediate level The current study aims to measure the test anxiety of research’s sample and to identify the statistical differences of test anxiety, considering two variables gender and students classes level (first and third intermediate class). To do this, a stratified random sampling of (300) student from first and third intermediate classes had selected from both the karkh and Rusafa sides of Baghdad province for the academic year 2015-2016. The author tested the whole sample by using the test anxiety scale that had tested for its validity and reliability. The results revealed that the research’s sample as a whole was suffering from test anxiety, there were a statistical differences between male and female tha
... Show MoreSoftware-defined networking (SDN) presents novel security and privacy risks, including distributed denial-of-service (DDoS) attacks. In response to these threats, machine learning (ML) and deep learning (DL) have emerged as effective approaches for quickly identifying and mitigating anomalies. To this end, this research employs various classification methods, including support vector machines (SVMs), K-nearest neighbors (KNNs), decision trees (DTs), multiple layer perceptron (MLP), and convolutional neural networks (CNNs), and compares their performance. CNN exhibits the highest train accuracy at 97.808%, yet the lowest prediction accuracy at 90.08%. In contrast, SVM demonstrates the highest prediction accuracy of 95.5%. As such, an
... Show More
Abstract
The net profit reported in the annual financial statements of the companies listed in the financial markets, is considered one of the Sources of information relied upon by users of accounting information in making their investment decisions. At the same time be relied upon in calculating the bonus (Incentives) granted to management, therefore the management of companies to manipulate those numbers in order to increase those bonuses associated to earnings, This practices are called earnings management practices. the manipulation in the figures of earnings by management will mislead the users of financial statements who depend on reported earnings in their deci
... Show MoreThe development of wireless sensor networks (WSNs) in the underwater environment leads to underwater WSN (UWSN). It has severe impact over the research field due to its extensive and real-time applications. However effective execution of underwater WSNs undergoes several problems. The main concern in the UWSN is sensor nodes’ energy depletion issue. Energy saving and maintaining quality of service (QoS) becomes highly essential for UWASN because of necessity of QoS application and confined sensor nodes (SNs). To overcome this problem, numerous prevailing methods like adaptive data forwarding techniques, QoS-based congestion control approaches, and various methods have been devised with maximum throughput and minimum network lifesp
... Show MoreThe development of wireless sensor networks (WSNs) in the underwater environment leads to underwater WSN (UWSN). It has severe impact over the research field due to its extensive and real-time applications. However effective execution of underwater WSNs undergoes several problems. The main concern in the UWSN is sensor nodes’ energy depletion issue. Energy saving and maintaining quality of service (QoS) becomes highly essential for UWASN because of necessity of QoS application and confined sensor nodes (SNs). To overcome this problem, numerous prevailing methods like adaptive data forwarding techniques, QoS-based congestion control approaches, and various methods have been devised with maximum throughput and minimum network lifesp
... Show MoreThis paper presents a fuzzy logic controller for a two-tank level control system, which is a process with a dead time. The fuzzy controller is a proportional-integral (PI-like) fuzzy controller which is suitable for steady state behavior of the system. Transient behavior of the system was improved without the need for a derivative action by suitable change in the rule base of the controller. Simulation results showed the step response of the two-tank level control system when this controller was used to control this plant and the effect of the dead time on the response of the system.