Deep beams are used in wide construction fields such as water tanks, foundations, and girders in multi-story buildings to provide certain areas free of columns. In practice it is quite often occurring to create web opening in deep beams to supply convenient passage of ventilation ducts, cable channels, gas and water pipes. Experimental studies of ten 10 deep beams were carried out, where two of them are control specimens without openings and eight with large web openings in the shear spans. The variables that have been adopted are the ratio of the shear span to the overall depth of the member cross-section, location and dimensions of the opening. Test results showed that there was a decrease in the load carrying capacity of deep beams with openings compared to the control deep beams. This reduction may reach 66% in particular cases. It is clear that, the position of opening in shear span has less effect on the performance of structural concrete deep beams at different serviceability stages. Only 11% increase in load capacity at failure was observed in specimens with openings adjacent to the interior edges of shear spans in comparison with specimens with openings at the center of shear span because the discontinuity of the load path is less. Also the midspan deflection at service load level of the reference beam in specimens with openings adjacent to interior edge of shear spans was less than the midspan deflection of reference specimens by 10% - 33%. Evaluating all these advantages facilitates to recommend, if it is very required, the creation of openings at the interior edges of shear spans of the structural concrete deep beams.
With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se
... Show MoreOne study whose importance has significantly grown in recent years is lip-reading, particularly with the widespread of using deep learning techniques. Lip reading is essential for speech recognition in noisy environments or for those with hearing impairments. It refers to recognizing spoken sentences using visual information acquired from lip movements. Also, the lip area, especially for males, suffers from several problems, such as the mouth area containing the mustache and beard, which may cover the lip area. This paper proposes an automatic lip-reading system to recognize and classify short English sentences spoken by speakers using deep learning networks. The input video extracts frames and each frame is passed to the Viola-Jone
... Show MoreAn oil spill is a leakage of pipelines, vessels, oil rigs, or tankers that leads to the release of petroleum products into the marine environment or on land that happened naturally or due to human action, which resulted in severe damages and financial loss. Satellite imagery is one of the powerful tools currently utilized for capturing and getting vital information from the Earth's surface. But the complexity and the vast amount of data make it challenging and time-consuming for humans to process. However, with the advancement of deep learning techniques, the processes are now computerized for finding vital information using real-time satellite images. This paper applied three deep-learning algorithms for satellite image classification
... Show MoreRecently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural
... Show More