Deep beams are used in wide construction fields such as water tanks, foundations, and girders in multi-story buildings to provide certain areas free of columns. In practice it is quite often occurring to create web opening in deep beams to supply convenient passage of ventilation ducts, cable channels, gas and water pipes. Experimental studies of ten 10 deep beams were carried out, where two of them are control specimens without openings and eight with large web openings in the shear spans. The variables that have been adopted are the ratio of the shear span to the overall depth of the member cross-section, location and dimensions of the opening. Test results showed that there was a decrease in the load carrying capacity of deep beams with openings compared to the control deep beams. This reduction may reach 66% in particular cases. It is clear that, the position of opening in shear span has less effect on the performance of structural concrete deep beams at different serviceability stages. Only 11% increase in load capacity at failure was observed in specimens with openings adjacent to the interior edges of shear spans in comparison with specimens with openings at the center of shear span because the discontinuity of the load path is less. Also the midspan deflection at service load level of the reference beam in specimens with openings adjacent to interior edge of shear spans was less than the midspan deflection of reference specimens by 10% - 33%. Evaluating all these advantages facilitates to recommend, if it is very required, the creation of openings at the interior edges of shear spans of the structural concrete deep beams.
Patients infected with the COVID-19 virus develop severe pneumonia, which typically results in death. Radiological data show that the disease involves interstitial lung involvement, lung opacities, bilateral ground-glass opacities, and patchy opacities. This study aimed to improve COVID-19 diagnosis via radiological chest X-ray (CXR) image analysis, making a substantial contribution to the development of a mobile application that efficiently identifies COVID-19, saving medical professionals time and resources. It also allows for timely preventative interventions by using more than 18000 CXR lung images and the MobileNetV2 convolutional neural network (CNN) architecture. The MobileNetV2 deep-learning model performances were evaluated
... Show MoreMaterial obtained from the demolition of concrete structures and milling of flexible pavements has the highest potential for recyclability. This study aimed to evaluate the performance of hot mix asphalt with the concurrent use of recycled asphalt pavement (RAP) and recycled concrete aggregate (RCA). Contents of RAP and RCA were varied from 0% to 50% by fixing the total recycling materials percentage to 50%. Penetration grade 40/50 virgin binder and waste engine oil (WEO) as rejuvenator were used in the present study. A series of tests, such as Scanning electron microscopy (SEM), Marshall stability, indirect tensile strength test, IDEAL CT, uniaxial compression test, and resilient modulus test, were carried out to assess the performance of
... Show MoreIdentifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration
... Show MoreThis research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.