Accurate prediction of river water quality parameters is essential for environmental protection and sustainable agricultural resource management. This study presents a novel framework for estimating potential salinity in river water in arid and semi‐arid regions by integrating a kernel extreme learning machine (KELM) with a boosted salp swarm algorithm based on differential evolution (KELM‐BSSADE). A dataset of 336 samples, including bicarbonate, calcium, pH, total dissolved solids and sodium adsorption ratio, was collected from the Idenak station in Iran and was used for the modelling. Results demonstrated that KELM‐BSSADE outperformed models such as deep random vector functional link (dRVFL), general regression neural network (GRNN), multivariate adaptive regression spline (MARS), online sequential extreme learning machine (OSELM) and extreme gradient boosting decision tree (XGBoost) when compared with observed river salinity data. Also, the KELM‐BSSADE model effectively identified optimal inputs through the Boruta‐XGBoost (B‐XGB) feature selection method. Four metaheuristic‐based KELM models were developed, utilizing grey wolf optimizer, whale optimization, slime mould algorithm and equilibrium optimizer, further illustrating the capability of KELM‐BSSADE in estimating potential salinity in river water. By accurately estimating potential salinity, KELM‐BSSADE can assist in optimizing irrigation practices, ensuring that agricultural demands are met while minimizing the risk of salinity‐related crop damage.
Abstract. The main technique for removing bacteria from water for various applications is chemical disinfection. However, this method has many disadvantages such as producing disinfectant by-products (DBPs), biofilm formation and either rendering the water unpotable (at high residual disinfection) or leaving a potential for lethal diseases such as Cholera (if the residual disinfection is too low). Recently, a process was developed for continuous removal of bacteria from water using the principle of froth flotation through compressed air only without any chemicals (Hassan, 2015). This work examines the extent to which chemical free froth flotation can purify drinking water. The experiments were carried out using two flotation columns
... Show MoreThis study examined the effects of water scarcity on rural household economy in El Fashir Rural Council / North Darfur State- western Sudan. Both quantitative and qualitative methods were used as to get a deeper understanding of the impact of water scarcity on the rural house economy in the study area. 174 households out of 2017 were selected from 45 villages which were distributed in eight village councils forming the study area. Statistical methods were used to manipulate the data of the study. The obtained results revealed that water scarcity negatively affected the rural household economy in the study area in many features. These include the followings: much family efforts and time were directed to fetch for water consequentl
... Show MoreAbstract. Shock chlorination is a well-known practice in swimming pools and domestic wells. One of the limitations for using this technique in drinking water purification facilities is the difficulty of quickly removing high chlorine concentrations in water distribution systems or production facilities. In order to use this method in the drinking water industry a shock de-chlorination method should be introduced for producing microorganism and biocide free water. De-chlorination using natural stagnant aeration (leaving the water to lose the chlorine naturally) is the safest known method if compared with chemical and charcoaling methods. Unfortunately, stagnant aeration is a slow process. Therefore, developing a process for accelerat
... Show MoreProduced water is accompanied with the production of oil and gas especially at the fields producing by water drive or water injection. The quantity of these waters is expected to be more complicated problem with an increasing in water cut which is expected to be 3-8 barrels water/produced barrel oil.Produced water may contain many constituents based on what is present in the subsurface at a particular location. Produced water contains dissolved solids and hydrocarbons (dissolved and suspended) and oxygen depletion. The most common dissolved solid is salt with concentrations range between a few parts per thousand to hundreds parts per thousand. In addition to salt, many produced waters also contain high levels of heavy metals like zinc, bari
... Show MoreThe research aims to improve the performance of the Directorate of Maysan water by reconciling the objectives of the employees of the directorate with the objectives of the Directorate itself, as well as to identify the strengths and weaknesses in the performance of the Directorate (Leadership - Individuals - Knowledge - Operations - Financial) and presented to experts and arbitrators of specialized, and the researchers have relied on the case study methodology as a descriptive approach is comprehensive analysis, and draws on more than one approach, method and scientific design, has been interviewed a number of experts in the Directorate Maysan's water Identify the weaknesses and strengths of the Directorate, the research has rea
... Show MoreHydrogen fuel is a good alternative to fossil fuels. It can be produced using a clean energy without contaminated emissions. This work is concerned with experimental study on hydrogen production via solar energy. Photovoltaic module is used to convert solar radiation to electrical energy. The electrical energy is used for electrolysis of water into hydrogen and oxygen by using alkaline water electrolyzer with stainless steel electrodes. A MATLAB computer program is developed to solve a four-parameter-model and predict the characteristics of PV module under Baghdad climate conditions. The hydrogen production system is tested at different NaOH mass concentration of (50,100, 200, 300) gram. The maximum hydrogen produc
... Show More
