Accurate prediction of river water quality parameters is essential for environmental protection and sustainable agricultural resource management. This study presents a novel framework for estimating potential salinity in river water in arid and semi‐arid regions by integrating a kernel extreme learning machine (KELM) with a boosted salp swarm algorithm based on differential evolution (KELM‐BSSADE). A dataset of 336 samples, including bicarbonate, calcium, pH, total dissolved solids and sodium adsorption ratio, was collected from the Idenak station in Iran and was used for the modelling. Results demonstrated that KELM‐BSSADE outperformed models such as deep random vector functional link (dRVFL), general regression neural network (GRNN), multivariate adaptive regression spline (MARS), online sequential extreme learning machine (OSELM) and extreme gradient boosting decision tree (XGBoost) when compared with observed river salinity data. Also, the KELM‐BSSADE model effectively identified optimal inputs through the Boruta‐XGBoost (B‐XGB) feature selection method. Four metaheuristic‐based KELM models were developed, utilizing grey wolf optimizer, whale optimization, slime mould algorithm and equilibrium optimizer, further illustrating the capability of KELM‐BSSADE in estimating potential salinity in river water. By accurately estimating potential salinity, KELM‐BSSADE can assist in optimizing irrigation practices, ensuring that agricultural demands are met while minimizing the risk of salinity‐related crop damage.
Machine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To
... Show MoreAl Huweizah Marsh is considered as the largest marsh at the southern part of Iraq. About one third of the marsh is located within the Iranian territory. Iran began to construct earth dikes along the Iraqi-Iranian international borders to separate the Iranian part of the marsh. The electrical conductivity, EC, value was adopted to be the indicator for the water salinity within the marsh. A steady two-dimensional water quality routing model was implemented by using the RMA2 and RMA4 softwares within the SMS computer package to estimate the distribution of the
EC values within the marsh seasonally during the wet, moderate and dry water years. The EC distribution Patterns were estimated considering the expected two cases of the marsh futu
A field experiment was conducted in Yusufiya sub-district - Mahmudiya township/Baghdad governorate in silty loam texture soil during the spring season of 2020. The experiment included three treatments with three replicates, as the Randomized Complete Block Design (RCBD) was used according to the arrangement of the split design block. The treatments are in the irrigation system, which included surface drip irrigation (T1) and sprinkler irrigation (T2). Secondly, the Irrigation levels including the irrigation using 0.70 Pan Evaporation Fraction PEF (I1), irrigation using 1.00 PEF (I2), and irrigation using 1.30 PEF (I3). Coupled with, Pota
... Show MoreThe estimation of recharge to ground water is the important basics to improve the use of ground water with other available resources, and to save ground water resource from depletion, especially when using large quantity of ground water during a long time such as for agricultural purposes. Al-Wand River Basin in Iraq suffers from water shortage of its requirement of Blajo–Al-Wand Project, and to cover this shortage, the ground water plays a good role to overcome this problem. In this study, three methods were used to estimate the recharge and ground water storage for Al-Wand Basin, these methods are: Water Table Fluctuation (WTF), Water Balance of Climatic for Basin, and Water Table Balance for Basin. The results showe
... Show MoreIron is one of the abundant elements on earth that is an essential element for humans and may be a troublesome element in water supplies. In this research an AAN model was developed to predict iron concentrations in the location of Al- Wahda water treatment plant in Baghdad city by water quality assessment of iron concentrations at seven WTPs up stream Tigris River. SPSS software was used to build the ANN model. The input data were iron concentrations in the raw water for the period 2004-2011. The results indicated the best model predicted Iron concentrations at Al-Wahda WTP with a coefficient of determination 0.9142. The model used one hidden layer with two nodes and the testing error was 0.834. The ANN model coul
... Show More