Background: Significant advancements have been observed in the additive manufacturing (AM) technology industry in recent decades. Due to the inherent variations among each AM manufacturing technique, new areas of investigation continually arise and require consideration. Additionally, the novel applications of additive manufacturing present new difficulties and possibilities for targeted focus. The aim of this manuscript is to conduct a comprehensive literature review that describes the various processing methods, precision levels, types of materials utilized, and potential applications of 3D printing technology in the field of dentistry. Data: An online search was conducted on databases including Research Gate, Google Scholar, and PubMed to identify potential applications of AM technologies in the dental industry. The most relevant studies on the subject were selected, including English-language articles published between 2006 and 2022. Conclusion: It is feasible to incorporate a variety of AM techniques in dentistry, which has led to improved workflow and acceptable clinical results. Moreover, the different technologies of 3D printing have a broad array of potential applications, enabling the development of novel and optimized techniques to produce dental products.
Landfill and incineration are the most common and widely used methods to dispose of solid wastes; both of these techniques are considered the main sources of pollution in the world due to the harmful toxic emissions that are considered an environmental problem. Because of the large areas used by landfills, they are not always considered an economical method. With the increase in the production of solid materials, solid wastes increase the pressure on incinerators and landfills, making the environmental pollution hazard more serious. Instead, these waste materials can be used in some other applications. One of the most important of these applications is asphalt pavements, which are the most used types of pavements in the
... Show MoreAASAH Enass J Waheed, Shatha MH Obaid, Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2019 - Cited by 5
Fibromuscular dysplasia (FMD) is a noninflammatory and nonatherosclerotic arteriopathy that is characterized by irregular cellular proliferation and deformed construction of the arterial wall that causes segmentation, constriction, or aneurysm in the intermediate-sized arteries. The incidence of FMD is 0.42–3.4%, and the unilateral occurrence is even rarer. Herein, we report a rare case of a localized extracranial carotid unilateral FMD associated with recurrent transient ischemic attacks (TIAs) treated by extracranial-intracranial bypass for indirect revascularization. The specific localization of the disease rendered our case unique.
When the drawdown pressure amounts to a value below the dew point pressure, a minor droplet of condensate is shaped and accumulated in the close area of wellbore. As the accumulation happens, the saturation of the liquid will grow and a reduction in gas relative permeability will happen, therefore it will affect the productivity. Generally, condensate baking problem in gas wells is being deliberated and studied and numerous techniques have been suggested to solve the problem. The studying of condensate banking dynamics is essential to evaluate the productivity and behavior of the wells of the gas fields.
Ultra-High Temperature Materials (UHTMs) are at the base of entire aerospace industry; these high stable materials at temperatures exceeding 1600 °C are used to manage the heat shielding to protect vehicles and probes during the hypersonic flight through reentry trajectory against aerodynamic heating and reducing plasma surface interaction. Those materials are also recognized as Thermal Protection System Materials (TPSMs). The structural materials used during the high-temperature oxidizing environment are mainly limited to SiC, oxide ceramics, and composites. In addition to that, silicon-based ceramic has a maximum-use at 1700 °C approximately; as it is an active oxidation process o
Antibacterial substances belong to a group of compounds that attack dangerous microorganisms. Therefore, killing bacteria or reducing their metabolic activity will lessen their adverse effects on a biological system. They originated from either synthetic materials, microbes, or mold. Many of these medications treat the gram-negative bacteria from the critical precedence group, such as pseudomonas, carbapenem-resistant acinetobacter, and enterobacterales. This study aims to investigate the simultaneous analysis of specific antibacterial spectrophotometrically. The WHO maintains this list of priority infections with antibiotic resistance. Drug combinations in single dosage forms are becoming increasingly popular in the pharmaceutical industry
... Show MoreCarbon-fiber-reinforced polymer (CFRP) is widely acknowledged as a leading advanced material structure, offering superior properties compared to traditional materials, and has found diverse applications in several industrial sectors, such as that of automobiles, aircrafts, and power plants. However, the production of CFRP composites is prone to fabrication problems, leading to structural defects arising from cycling and aging processes. Identifying these defects at an early stage is crucial to prevent service issues that could result in catastrophic failures. Hence, routine inspection and maintenance are crucial to prevent system collapse. To achieve this objective, conventional nondestructive testing (NDT) methods are utilized to i
... Show More