This study evaluates the flexural behavior of ultra-thin (50 mm) one‑way reinforced‑concrete (RC) slabs retrofitted with near‑surface mounted (NSM) carbon‑fiber‑reinforced polymer (CFRP) rods under quasi‑static loading. T300‑grade CFRP rods (≈4 mm diameter) were bonded in pre‑cut 7 mm × 7 mm grooves using a two‑part epoxy. As a proof-of-concept experimental baseline, three simply‑supported specimens (1000 mm × 500 mm × 50 mm) were tested in a six‑point bending configuration (four applied loads + two reactions): two conventional controls and one strengthened slab. A load‑control rate of ~15 kN/min was applied; the controls were cycled twice and the strengthened slab four times. Relative to the average of the two control specimens, the strengthened slab achieved ~+103% ultimate load (49.4 kN vs 24.3 kN) with a ~24% reduction in ductility (μΔ = 2.4 vs 3.15). Hysteretic dissipation, computed as loop area per cycle, was markedly higher for the strengthened slab; cycle‑matched comparisons (cycles 1–2) are reported alongside cumulative values. The results show that NSM CFRP can markedly enhance capacity and energy absorption of very thin one‑way slabs, with a trade‑off in ductility that should be considered in design.
Water is the basis of the existence of all kinds of life, so obtaining it with good quality represents a challenge to human existence and development especially in the desert and remote cities because these areas contain small populations and water purification requires great materials and huge amounts of fossil fuels resulting pollution of the environment. Cheap and environmentally friendly desalination methods have been done by using solar distillations. Passive solar stills have low yields, so in this research, the problem is overcome by connecting four heat pipes which are installed on the parabolic concentrator reflector with passive solar still to increase the temperature of hot water to more than 90°C, as a resul
... Show MoreBuilding natural period, T, is a key character in building response for wind and seismic induced forces. In design practice, the period, T, is either estimated from empirical relations proposed by the design codes or determined from analytical or numerical models. The effect of the soil-structure interaction is usually neglected in the design practice and analysis models. This paper uses a sophisticated finite element simulation to investigate the effect of soil-structure modeling on the fundamental period of RC buildings subjected to wind and seismic induced forces. A typical interior building frame has been imitated using the frame element for beams and columns with constrains to mo
This research presents a numerical study to simulate the heat transfer by forced convection as a result of fluid flow inside channel’s with one-sided semicircular sections and fully filled with porous media. The study assumes that the fluid were Laminar , Steady , Incompressible and inlet Temperature was less than Isotherm temperature of a Semicircular sections .Finite difference techniques were used to present the governing equations (Momentum, Energy and Continuity). Elliptical Grid is Generated using Poisson’s equations . The Algebraic equations were solved numerically by using (LSOR (.This research studied the effect of changing the channel shapes on fluid flow and heat transfer in two cases ,the first: cha
... Show MoreThe present work involved four steps: First step include reaction of acrylamide ,N-?-Methylen-bis(acryl amide) and N-tert Butyl acryl amide with poly acryloyl chloride in the presence of triethyl amine (Et3N) as catalyst, the second step include homopolymerization of all products of the first step by using benzoyl peroxide(BPO) as initiator in (80-90)Co in the presence of Nitrogen gas(N2). In the third step the poly acrylimide which prepare in second step was convert into potassium salt by using alcoholic potassium hydroxide solution. Fourth step include Alkylation of the prepared polymeric salts in third step by react it with different alkyl halides(benzyl chloride, allylbromide , methyl iodide) by using DMF as solvent for(10-12) hours.
... Show MoreEminent figures in Quranic studies in the fourth century of the Hegira, in his
copacity as the founder of the essentials of the indicative approach in interpretation
which is based on the consideration of research principles in interpretation science.
Al-Qushayri participated in clarifying the promotions of this approach in his
works which represent this approach. The mast distinguished of these works is
Tafseer Lataef Al-Isharat. The researcher examined the characteristics of this
approach and its effect on the interpretative movement in Al-Qushayri age an come to
employ them as a practical example for the indicative approach in studying the
interpretation mebods in Islamic sciences.
In this research PbS and PbS:Cu films were prepered with thicknesses (0.85±0.05)?m and (0.55±0.5)?m deposit on glass and silicon substrate respectively using chemical spray pyrolysis technique with a substrate temperature 573K, from lead nitrate salt, thiourea and copper chloride. Using XRD we study the structure properties for the undoped and doped films with copper .The analysis reveals that the structure of films were cubic polycrystalline FCC with a preferred orientation along (200) plane for the undoped films and 1% doping with copper but the orientation of (111) plane is preferred with 5% doping with the rest new peaks of films and appeared because of doping. Surface topography using optical microscope were be checked, it was found
... Show MoreAstronomy image is regarded main source of information to discover outer space, therefore to know the basic contain for galaxy (Milky way), it was classified using Variable Precision Rough Sets technique to determine the different region within galaxy according different color in the image. From classified image we can determined the percentage for each class and then what is the percentage mean. In this technique a good classified image result and faster time required to done the classification process.
Correlation and path coefficient analysis were worked out for ten morphological traits in 30 three-way crosses of maize. Phenotypic and genotypic correlation analysis indicated that ear length; row numbers per ear, grain numbers per row, leaf area and leaves numbers had a positive significant correlation with grain yield per plant. Further partitioning of correlation coefficients into direct and indirect effects showed that traits days to silking, row numbers per row and leaves numbers had a positive direct effect on grain yield per plant. The traits ear length, grain numbers per row and leaf area had a maximum total effect on grain yield. Furthermore, PCA analysis has gave interested