The effect of metal nanoparticles on the anaerobic digestion of sludge and the sludge bacterial community are still not well-understood, and both improvements and inhibitions have been reported. This study investigated the impact of 2, 10, and 30 mg/g TS silver and copper oxide nanoparticles (AgNPs and CuONPs) on the mesophilic anaerobic digestion of sludge and the bacterial community structure. The reactors were monitored for changes in tCOD, sCOD, TS, VS, biogas generation, and cell viability. Also, the relative abundance and taxonomic distribution of the bacterial communities were analyzed at the phylum and genus levels, including the genera involved in anaerobic digestion. Both AgNPs and CuONPs exhibited some inhibition on anaerobic digestion of sludge and biogas generation, and the inhibition was more evident at higher concentrations. CuONPs had a stronger inhibitory effect compared to AgNPs. After the introduction of AgNPs and CuONPs, cell viability initially decreased over the first two weeks but recovered after that. At high concentrations, AgNPs and CuONPs decreased the overall bacterial diversity, and inhibited the dominant bacterial species, allowing those in less abundance to flourish. The relative abundance of the bacteria responsible for hydrolysis and acidogenesis increased and the relative abundance of acetogenic bacteria decreased with higher AgNP and CuONP concentrations. The majority of the parameters measured for monitoring the anaerobic digestion performance and bacterial community were not statistically significant at 2 mg/g TS of AgNPs and CuONPs, which represents naturally present concentrations in wastewater sludge that are below the USEPA ceiling concentration limits.
The research aims to shed light on the financing structure, which is one of the important pillars of financial management in the commercial banking sector, which enhances its financial position through financing its various investments, which is one of the pillars of the successful economy of the commercial banking sector. in which country. The contents of the research variables, which were represented by the independent variable, financing structure, the dependent variable, and investment decisions in commercial banks, which the researcher tried to address, as the research began with a basic variable that depends on diagnosing the impact of the financin
... Show MorePoly methyl methacrylate PMMA polymer could be considered the main material that used mostly in the recent years in denture base fabrication. It commonly known by it is poor strength properties such as low impact strength. The aim of the present research was to enhance the performance of PMMA denture base through the addition of two kind of nanoparticles (nano particles that selected from artificial and natural sources). Nano -particles from both Al2O3 and crushed peanut Peel were used for comparing purposes.Various weight fraction used in this study for both kinds of the additive (1%, 2% and 3%). Moreover, in this work a study and evaluation in impact strength (I.S.) value were done before and after immersion. The new prepared nanocompo
... Show MoreChemical spray pyrolysis technique was used at substrate temperature 250 ˚C with annealing temperature at 400 ˚C (for 1hour) to deposition tungsten oxide thin film with different doping concentration of Au nanoparticle (0, 10, 20, 30 and 40)% wt. on glass substrate with thickness about 100 nm. The structural, optical properties were investigated. The X-ray diffraction shows that the films at substrate temperature (250 ˚C) was amorphous while at annealing temperature have a polycrystalline structure with the preferred orientation of (200), all the samples have a hexagonal structure for WO3 and Au gold nanoparticles have a cubic structure. Atomic force microscopy (AFM) was used to characterize the morphology of the films. The optical pr
... Show MoreNanoparticles have gained considerable interest in recent times for oil recovery purposes owing to significant capabilities in wettability alteration of reservoir rocks. Wettability is a key factor controlling displacement efficiency and ultimate recovery of oil. The present study investigates the influence of zirconium (IV) oxide (ZrO2) and nickel (II) oxide (NiO) nanoparticles on the wetting preference of fractured (oil-wet) limestone formations. Wettability was assessed through SEM, AFM and contact angle. The potentials of the nanoparticles to alter oil-wet calcite substrates water wet, was experimentally tested at low nanoparticle concentrations (0.004–0.05 wt%). Quite similar behaviour was observed for both nanoparticles at the same
... Show MoreIn this study the assessment radon concentration in sludge of Oil
Fields in North Oil Company (N.O.C.) of Iraq have been studied
using CR-39 solid–state nuclear track detector technique. A total of
34 samples selected from 12 oil stations in the company have been
placed in the dosimeters. The average radon concentration was found
to be 162.29 Bq/m3 which is fortunately lower than the standard
international limit. The potential alpha energy concentration and
annual effective dose have been calculated. A proportional
relationship between the annual effective dose and radon
concentration within the studied region has been certified.
Pure and doped barium titanate with Mg2+ ion at two molar ratios x= (5%, 10%) mol. has been synthesized by solid state reaction technique. The powders sintered at two temperatures (1000 °C and 1400 °C). An XRD technique was used in order to study the crystal structure of pure and doped barium titanate, which confirmed the formation of the tetragonal phase of BaTiO3, and then calculate the lattice parameters of pure and doped barium titanate, the addition of magnesium ion Mg2+ can lead to decreases lattice parameters.
Pure and doped barium titanate with Mg2+ ion at two molar ratios x= (5%, 10%) mol. has been synthesized by solid state reaction technique. The powders sintered at two temperatures (1000 °C and 1400 °C). An XRD technique was used in order to study the crystal structure of pure and doped barium titanate, which confirmed the formation of the tetragonal phase of BaTiO3, and then calculate the lattice parameters of pure and doped barium titanate, the addition of magnesium ion Mg2+ can lead to decreases lattice parameters.
In this paper the effect of mixing TiO2 nanoparticles with epoxy resin is studied. The TiO2 nanoparticles would be synthesis and characterized by scanning electron microscopy (SEM), XRD FTIR, for two particle sizes of 50 and 25 nm. The thermal conductivity is measured with and without composite epoxy resin; the results showed that the thermal conductivity was increased as nanoparticle concentration increased too. The thermal conductivity was increased as particle size decreased.
The nonlinear optical properties response of nematic liquid crystal (6CHBT) and the impact of doping with two kinds of nanoparticles; Fe3O4 magnetic nanoparticles and SbSI ferroelectric nanoparticles have been studied using the non-linear dynamic method through z-scan measurement technique. This was achieved utilizing CW He-Ne laser. The pure LC and magnetic LC nanoparticle composite samples had a maximum absorption while the ferroelectric LC nanoparticle composite had a minimum absorption of the incident light. The nonlinear refractive index was positive for the pure LC and the rod-like ferronematic LC composite samples, while it was negative for the ferroelectric LC composite. The studying of the nonlinear optical
... Show More