Metasurface polarizers are essential optical components in modern integrated optics and play a vital role in many optical applications including Quantum Key Distribution systems in quantum cryptography. However, inverse design of metasurface polarizers with high efficiency depends on the proper prediction of structural dimensions based on required optical response. Deep learning neural networks can efficiently help in the inverse design process, minimizing both time and simulation resources requirements, while better results can be achieved compared to traditional optimization methods. Hereby, utilizing the COMSOL Multiphysics Surrogate model and deep neural networks to design a metasurface grating structure with high extinction ration of »60000 at visible spectral wavelength of 632 nm, could be achieved.
Static Synchronous Series Compensator (SSSC) is a well known device for effectively regulating the active power flow in a power system. In this paper, the SSSC linearized power flow equations are incorporated into Newton-Raphson algorithm in a MATLAB written program to investigate the control of active poweer flow and the transient stability of a five bus and a thirty bus IEEE test systems, during abnormal conduction (three phase fault near buses). A comparison of the results obtained for the base case without SSSC and with it to investigate the effectiveness of the device on both of the active power flow and the transient stability.
The progress of science in all its branches and levels made great civilized changes of
our societies in the present day, it's a result of the huge amount of knowledge, the increase of
number of students, and the increase of community awareness proportion of the importance of
education in schools and universities, it became necessary for us as educators to look at
science from another point of view based on the idea of scientific development of curricula
and teaching methods and means of education, and for the studying class environment as a
whole, by computer and internet use in education to the emergence of the term education
technology, which relies on the use of modern technology to provide educational content to<
This study represents an optical biosensor for early skin cancer detection using cysteine-cupped CdSe/CdS Quantum Dots (QDs). The study optimizes QD synthesis, surface, optical functionalization, and bioconjugation to enhance specificity and sensitivity for early skin cancer cell detection. The research provides insights into QD interactions with skin cancer biomarkers, demonstrating high-contrast, precise cellular imaging. Cysteine-capped CdSe/CdS absorption spectra reveal characteristic peaks for undamaged DNA, while spectral shifts indicate structural changes in skin-cancer-damaged DNA. Additionally, fluorescence spectra show sharp peaks for undamaged DNA and notable shifts and intensity variations when interacting with skin cancer. This
... Show MoreIn this research, a variable stiffness actuator is proposed to enhance the damping of the mechanical vibrating system. The frequency response analysis of the vibrating system is dependant in order to analyze and synthesis this semi-active damping, where the suggested process is using active filter to estimate the present frequency of the vibration system, and this will limit the value of the stiffness of the vibrated system. Two active filter s are needed, low-pass-filter (LPF) to choose the higher stiffness of the actuator at small frequencies as well as more damping and high-pass-filter (HPF) to choose the lower stiffness of the actuator at high frequencies as well as more damping, and so
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreIn this study, a mathematical model for the kinetics of solute transport in liquid membrane systems (LMSs) has been formulated. This model merged the mechanisms of consecutive and reversible processes with a “semi-derived” diffusion expression, resulting in equations that describe solute concentrations in the three sections (donor, acceptor and membrane). These equations have been refined into linear forms, which are satisfying in the special conditions for simplification obtaining the important kinetic constants of the process experimentally.
Thin films of vanadium oxide nanoparticles doped with different concentrations of europium oxide (2, 4, 6, and 8) wt % are deposited on glass and Si substrates with orientation (111) utilizing by pulsed laser deposition technique using Nd:YAG laser that has a wavelength of 1064 nm, average frequency of 6 Hz and pulse duration of 10 ns. The films were annealed in air at 300 °C for two hours, then the structural, morphological and optical properties are characterized using x-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) and UV-Vis spectroscopy respectively. The X-ray diffraction results of V2O5:Eu2O3 exhibit that the film has apolycrystalline monoclinic V2O5 and triclinic V4O7 phases. The FESEM image shows a h
... Show MoreThe evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed
... Show More