هدفت الدراسة الى الاهتمام واستغلال ماهو جديد من تقنيات واجهزة حديثة في تعليم السباحة الحرة عن طريق توجيه الاطفال على تطوير مداركهم واستيعابهم بالتطور التكنولوجي الذي يتناوله العالم ،قامت الباحثتان باعداد منهج تعليمي باستخدام نظارة الواقع الافتراضي وذالك بتوفير بيئة مشابهة للبيئة الحقيقية تحاكي مدارك عقول الاطفال في عالم افتراضي لتتكون صورة كاملة عن مهارات السباحة الحرة ،ومن هنا اتت المشكلة نتيجة تعلق وولع اطفالها بشكل مبالغ فيه بالاجهزة والتقنيات الحديثة والمتطورة وقضاء اغلب اوقاتهم في استخدام التقنيات الحديثة والتي يصعب على الشخص البالغ استخدامها لكننا نجد الاطفال اكثر قدرة على التعامل معها لذالك لقد لاحظت الباحثتان هذه المشكلة وتبلورت الفكرة لحل هذه المشكلة في الاستخدام الجانب الايجابي لهذه التقنية لتحسين بعض القدرات الحركية وتعلم مهارات السباحة الحرة. واعتمد المنهج التجريبي بتصميم المجموعتين التجريبية والضابطة على عينة من اطفال الصف الاول الابتدائي بلغ (20) طفل واختيرت عمدية بنسبة (47.619%) من مجتمهم الاصلي المتمثل بطلاب الصف الاول الابتدائي في مدرسة العراق الدولية للعام الدراسي (2023-2024) المستمرين بالدوام المنتظم والحضوري ، اذ قسمت العينة الى مجموعتين تجريبية وضابطة ،وتم التجريب على اطفال المجموعة التجريبية لمدة (6) اسبوع متتالي بواقع وحدتين في الاسبوع ، وبعد الانتهاء تمت معالجة النتائج بنظام SPSS لتكون الاستنتاجات والتوصيات بانه من الممكن استخدام تقنية النظارة الذكية في الدروس العملية لتعلم مهارات السباحة الحرة للاطفال وان استخدام نظارة الواقع الافتراضي في دروس السباحة يساعد على تحسين بعض القدرات الحركية وتعلم السباحة الحرة للاطفال حيث تفوقت المجموعة التي استخدمت تقنية النظارة الذكية على الاطفال الذين تعلمو بدونها ، ومن الضروري زيادة الاهتمام بتعليم الاطفال على وفق تقنية نظارة الواقع الافتراضي التي وفرت لهم اثارة وتشويق في التعلم والبحث عن ماهو جديد يخدم عملية التعلم بشكل كبير. وهذا ما يحقق احد اهداف التنمية المستدامة للامم المتحدة في العراق (التعليم الجيد).
Imitation learning is an effective method for training an autonomous agent to accomplish a task by imitating expert behaviors in their demonstrations. However, traditional imitation learning methods require a large number of expert demonstrations in order to learn a complex behavior. Such a disadvantage has limited the potential of imitation learning in complex tasks where the expert demonstrations are not sufficient. In order to address the problem, we propose a Generative Adversarial Network-based model which is designed to learn optimal policies using only a single demonstration. The proposed model is evaluated on two simulated tasks in comparison with other methods. The results show that our proposed model is capable of completing co
... Show MorePatients infected with the COVID-19 virus develop severe pneumonia, which typically results in death. Radiological data show that the disease involves interstitial lung involvement, lung opacities, bilateral ground-glass opacities, and patchy opacities. This study aimed to improve COVID-19 diagnosis via radiological chest X-ray (CXR) image analysis, making a substantial contribution to the development of a mobile application that efficiently identifies COVID-19, saving medical professionals time and resources. It also allows for timely preventative interventions by using more than 18000 CXR lung images and the MobileNetV2 convolutional neural network (CNN) architecture. The MobileNetV2 deep-learning model performances were evaluated
... Show MoreBotnet detection develops a challenging problem in numerous fields such as order, cybersecurity, law, finance, healthcare, and so on. The botnet signifies the group of co-operated Internet connected devices controlled by cyber criminals for starting co-ordinated attacks and applying various malicious events. While the botnet is seamlessly dynamic with developing counter-measures projected by both network and host-based detection techniques, the convention techniques are failed to attain sufficient safety to botnet threats. Thus, machine learning approaches are established for detecting and classifying botnets for cybersecurity. This article presents a novel dragonfly algorithm with multi-class support vector machines enabled botnet
... Show MoreAbstract
The current research aims to identify the psychological security of students in the kindergarten department and identify if there is a significant difference between stage one and stage four students. To do this, the researcher adopted the psychological research scale of (Al-mohamdawi, 2007) that consisted of (30) items. It was administered to (120) female students chosen randomly from the kindergarten department in the college of education for women for the academic year (2029-2021). The results revealed that students in the kindergarten department have psychological security. There is a significant difference between stage one and four students in favor of stage four students.
The imbalances and economic problems which it face the countries, it is a result of international economic developments or changes or global crises such as deterioration in trade, sharp changes in oil prices, increasing global indebtedness, sharp changes in foreign exchange rates and other changes, all that, they affect the economic features of any country. and These influences vary from one country to another according to the rigidity of its economy and its potential in maneuvering with economic plans and actions that would reduce the impact or avoidance with minimal damage. Therefore, the countries that suffer from accumulated economic problems as a result of mismanagement and poor planning or suffe
... Show MoreThis research presents a study for precipitating phosphorus (as phosphate ion) from simulated wastewater (5ppm initial concentration of phosphorus) using calcium hydroxide Ca(OH)2 solution. The removal of phosphorus by Ca (OH)2 solution is expected to be very effective since the chemical reaction is of acid-base type but Ca(OH)2 forms complex compound with phosphate ions called. Hydroxyapatite Ca5 (PO4)3OH. hydroxyapatite is slightly soluble in water. This research was directed towards sustainable elements as phosphorus. Kinetics of the dissolution reaction of hydroxyapatite was investigated to find the best factors to recover phosphorus. The effect of con
... Show MoreThe issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of
... Show MoreBy definition, the detection of protein complexes that form protein-protein interaction networks (PPINs) is an NP-hard problem. Evolutionary algorithms (EAs), as global search methods, are proven in the literature to be more successful than greedy methods in detecting protein complexes. However, the design of most of these EA-based approaches relies on the topological information of the proteins in the PPIN. Biological information, as a key resource for molecular profiles, on the other hand, acquired a little interest in the design of the components in these EA-based methods. The main aim of this paper is to redesign two operators in the EA based on the functional domain rather than the graph topological domain. The perturb
... Show More