This paper studies a novel technique based on the use of two effective methods like modified Laplace- variational method (MLVIM) and a new Variational method (MVIM)to solve PDEs with variable coefficients. The current modification for the (MLVIM) is based on coupling of the Variational method (VIM) and Laplace- method (LT). In our proposal there is no need to calculate Lagrange multiplier. We applied Laplace method to the problem .Furthermore, the nonlinear terms for this problem is solved using homotopy method (HPM). Some examples are taken to compare results between two methods and to verify the reliability of our present methods.
In this research, Haar wavelets method has been utilized to approximate a numerical solution for Linear state space systems. The solution technique is used Haar wavelet functions and Haar wavelet operational matrix with the operation to transform the state space system into a system of linear algebraic equations which can be resolved by MATLAB over an interval from 0 to . The exactness of the state variables can be enhanced by increasing the Haar wavelet resolution. The method has been applied for different examples and the simulation results have been illustrated in graphics and compared with the exact solution.
Iraqi siliceous rocks were chosen to be used as raw materials in this study which is concern with the linear shrinkage and their related parameters. They are porcelinite from Safra area (western desert) and Kaolin Duekla, their powders were mixed in certain percentage, to shape compacts and sintered. The study followed with thermal and chemical treatments, which are calcination and acid washing. The effects on final compact properties such as linear shrinkage were studied. Linear shrinkage was calculated for sintered compacts to study the effects of calcination processes, chemical washing, weight percentage, sintering processes, loading moment were studied on this property where the compacts for groups is insulating materials.
Linear
A new method based on the Touchard polynomials (TPs) was presented for the numerical solution of the linear Fredholm integro-differential equation (FIDE) of the first order and second kind with condition. The derivative and integration of the (TPs) were simply obtained. The convergence analysis of the presented method was given and the applicability was proved by some numerical examples. The results obtained in this method are compared with other known results.
The Dagum Regression Model, introduced to address limitations in traditional econometric models, provides enhanced flexibility for analyzing data characterized by heavy tails and asymmetry, which is common in income and wealth distributions. This paper develops and applies the Dagum model, demonstrating its advantages over other distributions such as the Log-Normal and Gamma distributions. The model's parameters are estimated using Maximum Likelihood Estimation (MLE) and the Method of Moments (MoM). A simulation study evaluates both methods' performance across various sample sizes, showing that MoM tends to offer more robust and precise estimates, particularly in small samples. These findings provide valuable insights into the ana
... Show MoreThe main objective of this paper is to designed algorithms and implemented in the construction of the main program designated for the determination the tenser product of representation for the special linear group.
This study employs evolutionary optimization and Artificial Intelligence algorithms to determine an individual’s age using a single-faced image as the basis for the identification process. Additionally, we used the WIKI dataset, widely considered the most comprehensive collection of facial images to date, including descriptions of age and gender attributes. However, estimating age from facial images is a recent topic of study, even though much research has been undertaken on establishing chronological age from facial photographs. Retrained artificial neural networks are used for classification after applying reprocessing and optimization techniques to achieve this goal. It is possible that the difficulty of determining age could be reduce
... Show MoreSansevieriatrifasciata was studied as a potential biosorbent for chromium, copper and nickel removal in batch process from electroplating and tannery effluents. Different parameters influencing the biosorption process such as pH, contact time, and amount of biosorbent were optimized while using the 80 mm sized particles of the biosorbent. As high as 91.3 % Ni and 92.7 % Cu were removed at pH of 6 and 4.5 respectively, while optimum Cr removal of 91.34 % from electroplating and 94.6 % from tannery effluents was found at pH 6.0 and 4.0 respectively. Pseudo second order model was found to best fit the kinetic data for all the metals as evidenced by their greater R2 values. FTIR characterization of biosorbent revealed the presence of carboxyl a
... Show MorePolyacrylonitrile nanofiber (PANFS), a well-known polymers, has been extensively employed in the manufacturing of carbon nanofibers (CNFS), which have recently gained substantial attention due to their excellent features, such as spinnability, environmental friendliness, and commercial feasibility. Because of their high carbon yield and versatility in tailoring the final CNFS structure, In addition to the simple formation of ladder structures through nitrile polymerization to yield stable products, CNFS and PAN have been the focus of extensive research as potential production precursors. For instance, the development of biomedical and high-performance composites has now become achievable. PAN homopolymer or PAN-based precursor copolymer can
... Show MoreBig data analysis is essential for modern applications in areas such as healthcare, assistive technology, intelligent transportation, environment and climate monitoring. Traditional algorithms in data mining and machine learning do not scale well with data size. Mining and learning from big data need time and memory efficient techniques, albeit the cost of possible loss in accuracy. We have developed a data aggregation structure to summarize data with large number of instances and data generated from multiple data sources. Data are aggregated at multiple resolutions and resolution provides a trade-off between efficiency and accuracy. The structure is built once, updated incrementally, and serves as a common data input for multiple mining an
... Show More