Arabic text categorization for pattern recognitions is challenging. We propose for the first time a novel holistic method based on clustering for classifying Arabic writer. The categorization is accomplished stage-wise. Firstly, these document images are sectioned into lines, words, and characters. Secondly, their structural and statistical features are obtained from sectioned portions. Thirdly, F-Measure is used to evaluate the performance of the extracted features and their combination in different linkage methods for each distance measures and different numbers of groups. Finally, experiments are conducted on the standard KHATT dataset of Arabic handwritten text comprised of varying samples from 1000 writers. The results in the generation step are obtained from multiple runs of individual clustering methods for each distance measures. The best results are achieved when intensity, lines slope and their
The Matching and Mosaic of the satellite imagery play an essential role in many remote sensing and image processing projects. These techniques must be required in a particular step in the project, such as remotely change detection applications and the study of large regions of interest. The matching and mosaic methods depend on many image parameters such as pixel values in the two or more images, projection system associated with the header files, and spatial resolutions, where many of these methods construct the matching and mosaic manually. In this research, georeference techniques were used to overcome the image matching task in semi automotive method. The decision about the quality of the technique can be considered i
... Show MoreCognitive radios have the potential to greatly improve spectral efficiency in wireless networks. Cognitive radios are considered lower priority or secondary users of spectrum allocated to a primary user. Their fundamental requirement is to avoid interference to potential primary users in their vicinity. Spectrum sensing has been identified as a key enabling functionality to ensure that cognitive radios would not interfere with primary users, by reliably detecting primary user signals. In addition, reliable sensing creates spectrum opportunities for capacity increase of cognitive networks. One of the key challenges in spectrum sensing is the robust detection of primary signals in highly negative signal-to-noise regimes (SNR).In this paper ,
... Show MoreSignificant advances in the automated glaucoma detection techniques have been made through the employment of the Machine Learning (ML) and Deep Learning (DL) methods, an overview of which will be provided in this paper. What sets the current literature review apart is its exclusive focus on the aforementioned techniques for glaucoma detection using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines for filtering the selected papers. To achieve this, an advanced search was conducted in the Scopus database, specifically looking for research papers published in 2023, with the keywords "glaucoma detection", "machine learning", and "deep learning". Among the multiple found papers, the ones focusing
... Show MoreThere have been many writings and discussions that dealt with the details and interpretation of the research methods and the identification of the methods and methodological methods used by researchers and writers as they deal with research topics and problems in all fields of natural and human sciences. But we noticed that the movement of science and its knowledge and development requires the identification of suitable tools and methodological methods appropriate for each type of science. In other words, attempts should be established to build appropriate methodological tools for human and cognitive activity that can be referred to as a specific science that sets out certain paths of the human sciences which is certainly the ori
... Show Moreteen sites Baghdad are made. The sites are divided into two groups, one in Karkh and the other in Rusafa. Assessing the underground conditions can be occurred by drilling vertical holes called exploratory boring into the ground, obtaining soil (disturbed and undisturbed) samples, and testing these samples in a laboratory (civil engineering laboratory /University of Baghdad). From disturbed, the tests involved the grain size analysis and then classified the soil, Atterberg limit, chemical test (organic content, sulphate content, gypsum content and chloride content). From undisturbed samples, the test involved the consolidation test (from this test, the following parameters can be obtained: initial void ratio eo, compression index cc, swel
... Show MoreUrban morphological approach (concepts and practices) plays a significant role in forming our cities not only in terms of theoretical perspective but also in how to practice and experience the urban form structures over time. Urban morphology has been focused on studying the processes of formation and transformation of urban form based on its historical development. The main purpose of this study is to explore and describe the existing literature of this approach and thus aiming to summarize the most important studies that put into understanding the city form. In this regard, there were three schools of urban morphological studies, namely: the British, the Italian, and the French School. A reflective comparison between t
... Show MoreMotives: Baghdad is the capital city and an important political, administrative, social, cultural and economic centre of Iraq. Baghdad’s growth and development has been significantly influenced by efforts to accommodate various needs of its steadily growing population. Uncontrolled population and urban growth have exerted negative effects in numerous dimensions, including environmental sustainability because urban expansion occurred in green spaces within the city and the surrounding areas.Aim: The aim of this study was to examine the planning solutions in Baghdad’s green areas in the past and at present, and to identify the key changes in the city’s green areas, including changes in the ratio of green urban spaces to the tota
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreSensing insole systems are a promising technology for various applications in healthcare and sports. They can provide valuable information about the foot pressure distribution and gait patterns of different individuals. However, designing and implementing such systems poses several challenges, such as sensor selection, calibration, data processing, and interpretation. This paper proposes a sensing insole system that uses force-sensitive resistors (FSRs) to measure the pressure exerted by the foot on different regions of the insole. This system classifies four types of foot deformities: normal, flat, over-pronation, and excessive supination. The classification stage uses the differential values of pressure points as input for a feedforwar
... Show MoreBig data analysis has important applications in many areas such as sensor networks and connected healthcare. High volume and velocity of big data bring many challenges to data analysis. One possible solution is to summarize the data and provides a manageable data structure to hold a scalable summarization of data for efficient and effective analysis. This research extends our previous work on developing an effective technique to create, organize, access, and maintain summarization of big data and develops algorithms for Bayes classification and entropy discretization of large data sets using the multi-resolution data summarization structure. Bayes classification and data discretization play essential roles in many learning algorithms such a
... Show More