Abstract Background: The human epidermal growth factor receptor 2(HER2) proto-oncogene is overexpressed or amplified in approximately 15%-25% of invasive breast cancers. Approximately 35% of HER2-amplified breast cancers have coamplification of the topoisomerase II-alpha (TOP2A) gene encoding an enzyme that is a major target of anthracyclines. Hence, the determination of genetic alteration (amplification or deletion) of both genes is considered as an important predictive factor that determines the response of breast cancer patients to treatment. The aims of this study are to determinate TOP2A status gene amplification in a set of Iraqi patients with breast cancer that have had an equivocal (2+) and positive HER2/neu by immunohistochemistry (IHC) and to compare the results with estrogen receptor (ER) and progesterone receptor (PR) and HER2/neu status. Patients and methods: A cross-sectional prospective study done on 53 patients with invasive breast carcinoma. Twenty-six out of total 53 cases were positive HER2/neu (3+), the remaining 27 equivocal HER2-IHC (2+) cases reanalyzed using dual-color chromogenic in situ hybridization (ZytoVision) probe kit for further identification of HER2/neu gene amplification. Using chromogenic in situ hybridization (CISH), TOP2A gene status determination was done for all cases. Results: There is a direct significant correlation between TOP2A gene amplification and HER2/neu positivity, P < 0.05 in that 15 (39.4%) out of 38 positive HER2/neu cases were associated with topoisomerase gene amplification. Regarding relation of topoisomerase gene to hormone receptor status (ER and PR), there was a significant negative relationship between the gene and ER receptor status. The higher level of gene amplification was noticed in ER and PR negative cases in about 13 (43.3%) and 14 (48.2%) for ER and PR, respectively. Conclusion: TOP2A gene status has a significantly positive correlation with HER2/neu status while it has a significantly negative correlation with hormone receptor status.
In this study, four different spectrophotometric methods were applied for determination of cimetidine and erythromycin ethylsuccinate drugs in pure form and in their pharmaceutical preparations. The suggested methods are simple, sensitive, accurate, not time consuming and inexpensive. The results showed the following: The first method: Based on the formation of ion pair complex of each drug with bromothymol blue (BTB) as a chromogenic reagent. The formed complexes were extracted with chloroform and their absorbance values were measured at 427.5 nm for cimetidine and 416.5nm for erythromycin ethylsuccinate; against their reagents blanks. Two different methods, univariate method and multivariate method, were used to obtain the optimum condit
... Show MoreDC planar sputtering system is characterized by varying discharge potential of (250-2000 volt) and Argon gas pressures of (3.5×10-2 – 1.5) mbar. The breakdown voltage for silver electrode was studied with a uniform electric field at different discharge distances, as well as plasma parameters. The breakdown voltage is a product of the Argon gas pressure inside the chamber and gab distance between the electrodes, represent as Paschen curve. The Current-voltage characteristics curves indicate that the electrical discharge plasma is working in the abnormal glow region. Plasma parameters were found from the current-voltage characteristics of a single probe positioned at the inter-cathode space. Typical values of the electron temperature an
... Show MoreAbstract
Lightweight materials is used in the sheet metal hydroforming process, because it can be adapted to the manufacturing of complex structural components into a single body with high structural stiffness. Sheet hydroforming has been successfully developed in industry such as in the manufacturing of the components of automotive.The aim of this study is to simulate the experimental results ( such as the amount of pressure required to hydroforming process, stresses, and strains distribution) with results of finite element analyses (FEA) (ANSYS 11) for aluminum alloy (AA5652) sheets with thickness (1.2mm) before heat treatm
... Show MoreAbstract Planetary nebulae (PN) represents the short phase in the life of stars with masses (0.89-7) M☉. Several physical processes taking place during the red giant phase of low and intermediates-mass stars. These processes include :1) The regular (early ) wind and the envelope ejection, 2) The thermal pulses during Asymptotic Giant Branch (AGB ) phase. In this paper it is briefly discussed how such processes affect the mass range of Planetary Nebulae(PN) nuclei(core) and their evolution, and the PN life time, and fading time for the masses which adopted. The Synthetic model is adopted. The envelope mass of star (MeN ) and transition time (ttr) calculated respectively for the parameter (MeR =1.5,2, 3×10-3 M☉). Another time scale is o
... Show MoreThermal and catalytic pyrolysis of waste plastics in an inert atmosphere has been regarded as a creative method, since pyrolysis can convert plastics waste into hydrocarbons that can be used either as fuels or as a source of chemicals.
Natural Iraqi kaolin clay was used to synthesis the NaX nano- zeolite by hydrothermal conditions with average particle size equal to 77.63nm.Thermal decomposition kinetics of high-density polyethylene (HDPE) in the absence and presence of catalysts nano NaX Zeolite was investigated. Thermal and catalytic degradation of HDPE was performed using a thermogravimetric analyzer in nitrogen atmosphere under non-isothermal conditions 4, 7 and 10 °C/min heating rates were employed in thermogravimetric anal
... Show MoreRutting is a crucial concern impacting asphalt concrete pavements’ stability and long-term performance, negatively affecting vehicle drivers’ comfort and safety. This research aims to evaluate the permanent deformation of pavement under different traffic and environmental conditions using an Artificial Neural Network (ANN) prediction model. The model was built based on the outcomes of an experimental uniaxial repeated loading test of 306 cylindrical specimens. Twelve independent variables representing the materials’ properties, mix design parameters, loading settings, and environmental conditions were implemented in the model, resulting in a total of 3214 data points. The network accomplished high prediction accuracy with an R
... Show MoreThe aim of this research is to assess the validity of Detailed Micro-Modeling (DMM) as a numerical model for masonry analysis. To achieve this aim, a set of load-displacement curves obtained based on both numerical simulation and experimental results of clay masonry prisms loaded by a vertical load. The finite element method was implemented in DMM for analysis of the experimental clay masonry prism. The finite element software ABAQUS with implicit solver was used to model and analyze the clay masonry prism subjected to a vertical load. The load-displacement relationship of numerical model was found in good agreement with those drawn from experimental results. Evidence shows that load-displacement curvefound from the finite element m
... Show MoreThe ancient Iraqis in the Mesopotamian civilization practiced various sports activities and physical exercises to develop their physical fitness until these practices became a part of their lives and accompanied their religious, social, and military celebrations. Music had a presence in many sports scenes, and the presence of musicians and musical instruments with the armies indicated its great role. In the military scene, the research aims to shed light on the archaeological evidence and evidence of the integration of music with the sports and military scene in Mesopotamian civilization and to explore the impact of music in the sports and military scene of Mesopotamian civilization. The historical approach was adopted in collecting and des
... Show MoreThe Skyrme–Hartree–Fock (SHF) method with MSK7 Skyrme parameter has been used to investigate the ground-state properties for two-neutron halo nuclei 6He, 11Li, 12Be and 14Be. These ground-state properties include the proton, neutron and matter density distributions, the corresponding rms radii, the binding energy per nucleon and the charge form factors. These calculations clearly reveal the long tail characterizing the halo nuclei as a distinctive feature.