Multi-walled carbon nanotubes (MWCNTs) were functionalized by hexylamine (HA) in a promising, cost-effective, rapid and microwave-assisted approach. In order to decrease defects and remove acid-treatment stage, functionalization of MWCNTs with HA was carried out in the presence of diazonium reaction. Surface functionality groups and morphology of chemically-functionalized MWCNTS were characterized by FTIR, Raman spectroscopy, thermogravimetric analysis (DTG), and transmission electron microscopy (TEM). To reach a promising dispersibility in oil media, MWCNTs were functionalized with HA. While the cylindrical structures of MWCNTs were remained reasonably intact, characterization results consistently confirmed the sidewall-functionalization of MWCNTs with HA functionalities. Then, HA-treated MWCNTs-based turbine oil nanofluids (HA-MWCNTs/TO) with different volume fractions were synthesized and employed to be investigated in terms of heat transfer potential. Convective heat transfer coefficient of HA-MWCNTs/TO as a positive parameter and pressure drop as a negative factor were investigated for various volume fractions. While results suggested a weak increase in the pressure drop by MWCNTs loading into the TO, lack of acidic agents, the performance index higher than 1 and a significant increase in the convective heat transfer open a new gateway for introducing this economical product for industrial applications in turbines and can be a capable alternative for conventional TO.
A general velocity profile for a laminar flow over a flat plate with zero incidence is obtained by employing a new boundary condition to the other available boundary conditions. The general velocity profile is mathematically simple and nearest to the exact solution. Also other related values, boundary layer thickness, displacement thickness, momentum thickness and coefficient of friction are nearest to the exact solution compared with other corresponding values for other researchers.
A general velocity profile for a laminar flow over a flat plate with zero incidence is obtained by employing a new boundary condition to the other available boundary conditions. The general velocity profile is mathematically simple and nearest to the exact solution. Also other related values, boundary layer thickness, displacement thickness, momentum thickness and coefficient of friction are nearest to the exact solution compared with other corresponding values for other researchers.
MM Al-Waiz, AA Al-Nuaimy, HA Aljobori, MJ Abdulameer, Annals of Saudi Medicine, 2006 - Cited by 1
The efficiency of internal combustion engines (ICE) is usually about thirty percent of the total energy of the fuel. The residual energy is lost in the exhaust gas, the lubrication, and the cooling water in the radiators. Recently much of the researcher’s efforts have focused on taking advantage of wasted energy of the exhaust gas. Using a thermoelectric generator (TEG) is one of the promising ways. However, TEG depends entirely on the temperature difference, which may be offered by the exhaust muffler. An experimental test has been conducted to study the thermal performance of a different muffler internal design. The researchers resort to the use of lost energy in an ICE using TEG, which is one of the ways to take adv
... Show MoreSimple, sensitive and economical spectrophotometric methods have been developed for the determination of cefixime in pure form. This method is based on the reaction of cefixime as n-electron donor with chloranil to give highly colored complex in ethanol which is absorb maximally at 550 nm. Beer's law is obeyed in the concentration ranges 5-250 µg ml-1 with high apparent molar absorptivities of 1.52×103 L.mole-1. cm-1.
When an electron moves from one atom or molecule to another, a charge-transfer complex is formed. The other objects must be able to accept these electrons, and one entity must have free electrons or a tendency to donate them. This resembles an internal oxidation-reduction reaction more. This research aims to shed light on charge transfer complexes formed by polyenes and carotenes, which act as electron-donating molecules due to their alternating double and single bonds. This allows them to create such complexes when interacting with organic molecules that lack electrons. These complexes exhibited distinctive optical and physicochemical properties, enabling them to be adapted for a wide range of applications. In addition, th
... Show MoreBackground: Treatment of invasive prolactinoma, which has several characteristics including invasive growth into cavernous sinuses and formation of giant adenomas compressing adjacent neural structures, resulting in neurological dysfunction, has been very challenging. There are relatively few reports available describing long-term treatment outcome.
Aims of the study: In this study we evaluate the results of cabergoline administration as initial treatment during 4 years follow up period.
Methods: We prospectively categorized 36 patients into four groups according to the results of 3 months of cabergoline treatment: group 1, tumor volume reduction (TVR) ˃25% with normaliz
... Show MoreGypseous soils represented one of the most complex salty soils that faced the geotechnical engineers. Structures that built on gypsum soil will undergo unexpected distortions that will eventually contribute to catastrophic failure. The purpose of this article is to understand the durability of gypsum soil against wetting drying cycles after improvement with polyurethane polymer especially investigate the effect of the wetting-drying cycle on collapsibility. The soil was brought from Sawa lake in AL-Muthanna Governorate in Iraq, with gypsum content 65.5%, A set of Odometer tests were performed to determine the collapsibility potential (CP) for treated and untreated gypsum soil. The result shows that adding a different per
... Show More