Platinum nanoparticles (PtNPs) exhibit promising biomedical properties, but concerns about biocompatibility and synthesis-related toxicity remain. This study aimed to develop eco-friendly PtNPs using aqueous broccoli extract as a natural reducing and stabilizing agent, and to assess their multifunctional biomedical potential. PtNPs were synthesized through sonochemical reduction of K₂PtCl₆ in broccoli extract, followed by purification and comprehensive physicochemical characterization. UV–Vis confirmed nanoparticle formation at 253 nm, while XRD and FTIR analyses verified the crystalline FCC structure and phytochemical capping. TEM revealed mainly spherical PtNPs with an average core size of 14.83 ± 7.67 nm. Conversely, DLS showed a hydrodynamic diameter of 136.9 ± 11.1 nm and a zeta potential of − 8.6 mV, indicating moderate colloidal stability influenced by biomolecular capping. Biological assessments demonstrated broad-spectrum antibacterial activity, potent antioxidant effects in vitro (DPPH scavenging) and in vivo (improved TAC, reduced TOS and OSI), and accelerated wound healing in a BALB/c excision model (percent closure ≈ 90% by day 7). Additionally, PtNPs significantly lowered fasting blood glucose levels in STZ-induced diabetic rats and showed selective cytotoxicity toward HepG2 cells (IC₅₀ = 8.29 ± 0.59 µg/mL) compared to HDF cells (SI = 4.1). These findings position broccoli-mediated PtNPs as a biogenic nanoplatform with potential applications in antimicrobial, antioxidant, wound healing, antidiabetic, and anticancer therapies. However, further mechanistic studies and long-term biosafety assessments are necessary before clinical translation can occur.
Mobile Wireless sensor networks have acquired a great interest recently due to their capability to provide good solutions and low-priced in multiple fields. Internet of Things (IoT) connects different technologies such as sensing, communication, networking, and cloud computing. It can be used in monitoring, health care and smart cities. The most suitable infrastructure for IoT application is wireless sensor networks. One of the main defiance of WSNs is the power limitation of the sensor node. Clustering model is an actual way to eliminate the inspired power during the transmission of the sensed data to a central point called a Base Station (BS). In this paper, efficient clustering protocols are offered to prolong network lifetime. A kern
... Show Morestudy the effect of radiation microwave (MW) in inhibition the growth of some types of bacteria in a minced meat and barker were exposed to MW for different times included (0, 10, 20, 30 and 40) sec.The results showed a high inhibition rate for 40 sec, reached to 100%. It is the other side studied the effect of microwave radiation against four types of bacteria included (Staphylococcus aureus, Escherichia coli, Proteus mirabilis and Klebsiella spp), when were exposed to for (0, 5, 10, 20, 30 and 40) sec the inhibition ratio reached to 100% in each of the Proteus mirabilis and Klebsiella spp at 30 sec and Staphylococcus aureus and Escherichia coli at 40sec. using MW in the sterilization media, such as Nutrient agar, Macconkey agar and Man
... Show MoreIn this study, Zizphus spina-christi leaf powder was applied for the adsorption of methyl orange. The effect of different operating parameters on the Batch Process adsorption was investigated such as solution pH (2-12), effect of contact time (0-60 min.), initial dye concentration (2-20 mg/L), effect of adsorbent dosage (0-4.5 g) and effect of temperature (20-50ᵒC). The results show a maximum removal rate and adsorption capacity (%R= 23.146, qe = 2.778 mg/g) at pH = 2 and equilibrium was reached at 40 min. The pseudo- second-order kinetics were found to be best fit for the removal process (R2 = 0.997). Different isotherm models (Langmuir, Freundlich, Dubini-Radushkevich,Temkin) were applied in this stud
... Show MoreThe new, standard molecular biologic system for duplicating DNA enzymatically devoid of employing a living organism, like E. coli or yeast, represents polymerases chain reaction (PCR). This technology allows an exponential intensification of a minor quantity of DNA molecule several times. Analysis can be straightforward with more DNA available. A thermal heat cycler performs a polymerization chain reaction that involves repeated cycles of heating and cooling the reactant tubes at the desired temperature for each reaction step. A heated deck is positioned on the upper reaction tube to avoid evaporating the reaction mixture (normally volumes range from 15 to 100 l per tube), or an oil layer can be placed on a reaction mixture su
... Show MoreRMK Al-Zaid, AT Al-Musawi, SJ Mohammad
In this paper, for the first time we introduce a new four-parameter model called the Gumbel- Pareto distribution by using the T-X method. We obtain some of its mathematical properties. Some structural properties of the new distribution are studied. The method of maximum likelihood is used for estimating the model parameters. Numerical illustration and an application to a real data set are given to show the flexibility and potentiality of the new model.
Combining different treatment strategies successively or simultaneously has become recommended to achieve high purification standards for the treated discharged water. The current work focused on combining electrocoagulation, ion-exchange, and ultrasonication treatment approaches for the simultaneous removal of copper, nickel, and zinc ions from water. The removal of the three studied ions was significantly enhanced by increasing the power density (4–10 mA/cm2) and NaCl salt concentration (0.5–1.5 g/L) at a natural solution pH. The simultaneous removal of these metal ions at 4 mA/cm2 and 1 g NaCl/L was highly improved by introducing 1 g/L of mordenite zeolite as an ion-exchanger. A remarkable removal of heavy metals was reported
... Show MoreCombining different treatment strategies successively or simultaneously has become recommended to achieve high purification standards for the treated discharged water. The current work focused on combining electrocoagulation, ion-exchange, and ultrasonication treatment approaches for the simultaneous removal of copper, nickel, and zinc ions from water. The removal of the three studied ions was significantly enhanced by increasing the power density (4–10 mA/cm2) and NaCl salt concentration (0.5–1.5 g/L) at a natural solution pH. The simultaneous removal of these metal ions at 4 mA/cm2 and 1 g NaCl/L was highly improved by introducing 1 g/L of mordenite zeolite as an ion-exchanger. A remarkable removal of heavy metals was reported
... Show MoreThe degradation of Toluidine Blue dye in aqueous solution under UV irradiation is investigated by using photo-Fenton oxidation (UV/H2O2/Fe+). The effect of initial dye concentration, initial ferrous ion concentration, pH, initial hydrogen peroxide dosage, and irradiation time are studied. It is found put that the removal rate increases as the initial concentration of H2O2 and ferrous ion increase to optimum value ,where in we get more than 99% removal efficiency of dye at pH = 4 when the [H2O2] = 500mg / L, [Fe + 2 = 150mg / L]. Complete degradation was achieved in the relatively short time of 75 minutes. Faster decolonization is achieved at low pH, with the optimal value at pH 4 .The concentrations of degradation dye are detected by spectr
... Show MoreA comparative study was done on the adsorption of methyl orange dye (MO) using non-activated and activated corn leaves with hydrochloric acid as an adsorbent material. Scanning electron microscopy (SEM) and Fourier Transform Infrared spectroscopy (FTIR) were utilized to specify the properties of adsorbent material. The effect of several variables (pH, initial dye concentration, temperature, amount of adsorbent and contact time) on the removal efficiency was studied and the results indicated that the adsorption efficiency increases with the increase in the concentration of dye, adsorbent dosage and contact time, while inversely proportional to the increase in pH and temperature for both the treated and untreated corn leav
... Show More