In this study, SnO2 nanoparticles were prepared from cost-low tin chloride (SnCl2.2H2O) and ethanol by adding ammonia solution by the sol-gel method, which is one of the lowest-cost and simplest techniques. The SnO2 nanoparticles were dried in a drying oven at a temperature of 70°C for 7 hours. After that, it burned in an oven at a temperature of 200°C for 24 hours. The structure, material, morphological, and optical properties of the synthesized SnO2 in nanoparticle sizes are studied utilizing X-ray diffraction. The Scherrer expression was used to compute nanoparticle sizes according to X-ray diffraction, and the results needed to be scrutinized more closely. The micro-strain indicates the broadening of diffraction peaks for nanoparticles that are not ideal crystals. The extra broadening of the diffraction peak may lead to a miscalculation of the nanoparticle size. We use the Williamson-Hall method to directly compute and discuss the particle size and micro-strain of SnO2 nanoparticles and compare them with results obtained using the Scherrer method. In conclusion, the straight line has been derived due to Williamson–Hall methods demonstrating the nanoparticles' uniformity.
In the present work, a density functional theory (DFT) calculation to simulate reduced graphene oxide (rGO) hybrid with zinc oxide (ZnO) nanoparticle's sensitivity to NO2 gas is performed. In comparison with the experiment, DFT calculations give acceptable results to available bond lengths, lattice parameters, X-ray photoelectron spectroscopy (XPS), energy gaps, Gibbs free energy, enthalpy, entropy, etc. to ZnO, rGO, and ZnO/rGO hybrid. ZnO and rGO show n-type and p-type semiconductor behavior, respectively. The formed p-n heterojunction between rGO and ZnO is of the staggering gap type. Results show that rGO increases the sensitivity of ZnO to NO2 gas as they form a hybrid. ZnO/rGO hybrid has a higher number of vacancies that can b
... Show MoreTwilight is that light appear on the horizon before sunrise and after sunset, Astronomically it is known that sunrise and sunset are effected by high above sea level, but the effect of high above sea level on the time of astronomical twilight still not decided and controversy among astronomers, in This research we studies the effect of high above sea level on the time of astronomical twilight, through adding the equation correct high above sea level to equation computation of twilight and then calculate of changing in the time of twilight for different highest (0-10000) meters above sea level , and the ratio of increase for time with high between (15.45-20.5) minutes. It was found that there was an increase in the time of the twilight along
... Show MoreThe most significant function in oil exploration is determining the reservoir facies, which are based mostly on the primary features of rocks. Porosity, water saturation, and shale volume as well as sonic log and Bulk density are the types of input data utilized in Interactive Petrophysics software to compute rock facies. These data are used to create 15 clusters and four groups of rock facies. Furthermore, the accurate matching between core and well-log data is established by the neural network technique. In the current study, to evaluate the applicability of the cluster analysis approach, the result of rock facies from 29 wells derived from cluster analysis were utilized to redistribute the petrophysical properties for six units of Mishri
... Show MoreEffect of copper doping and thermal annealing on the structural and optical properties of Zn0.5Cd0.5S thin films prepared by chemical spray pyrolysis have been studied. Depositions were done at 250°C on glass substrate. The structural properties and surface morphology of deposited films were studied using X-ray diffraction (XRD) and photomicroscope (PHM) techniques. XRD studies reveal that all films are crystalline tetragonal structure. The film crystallinity are increased with 1% Cu-doping concentration and also increased for the films annealed at 300°C than the other studied cases. The lattice constant 'a' and 'c' varies with doping concentrations from 5.487Å to 5.427Å and 10.871Å to 10.757Å respectively. The grain size attained
... Show MoreNano-structural of vanadium pentoxide (V2O5) thin films were
deposited by chemical spray pyrolysis technique (CSPT). Nd and Ce
doped vanadium oxide films were prepared, adding Neodymium
chloride (NdCl3) and ceric sulfate (Ce(SO4)2) of 3% in separate
solution. These precursor solutions were used to deposit un-doped
V2O5 and doped with Nd and Ce films on the p-type Si (111) and
glass substrate at 250°C. The structural, optical and electrical
properties were investigated. The X-ray diffraction study revealed a
polycrystalline nature of the orthorhombic structure with the
preferred orientation of (010) with nano-grains. Atomic force
microscopy (AFM) was used to characterize the morphology of the
films. Un-do
In this study, the melting-cooling method was used to prepare the chalcogenide compound S60-Se40-X-PbX. Four samples were obtained by partial replacement of Selenium with Lead in the weight ratios x = 0, 10, 20, and 30, respectively. The materials were mixed separately, ground, placed in quartz ampoules, and heated to 500 degrees Celsius. After conducting several operations on the samples, their insulating properties were studied, represented by the real dielectric constant and the imaginary dielectric constant, and the electrical conductivity was measured as a function of the frequency. It was found that partial replacement plays an impo
In this paper the effect of mixing TiO2 nanoparticles with epoxy resin is studied. The TiO2 nanoparticles would be synthesis and characterized by scanning electron microscopy (SEM), XRD FTIR, for two particle sizes of 50 and 25 nm. The thermal conductivity is measured with and without composite epoxy resin; the results showed that the thermal conductivity was increased as nanoparticle concentration increased too. The thermal conductivity was increased as particle size decreased.
Optical detector was manufactured Bashaddam thermal evaporation technique at room temperature under pressure rays studied characteristics of reactive Scout efficiency quantitative ratio of the signal and the ability equivalent to noise
The aim of this study is to identify the effect of particle size and to increase the concentration of Iraqi bentonite on rheological properties in order to evaluate its performance and to know if it can be used as drilling fluid without additives or not. In this study, Iraqi bentonite was carried out by mineral composition (XRD), chemical composition (XRF) and Particle size distribution (PSD), and its rheological properties were measured at different particle size and concentration. The results showed that when the particle size of Iraqi bentonite decreased, and the rheological properties were increased with increased concentration of Iraqi bentonite. Also, Iraqi bentonite was unable to use as drilling fluid without certain additives.
... Show More