Cefixime is an antibiotic useful for treating a variety ofmicroorganism infections. In the present work, tworapid, specific, inexpensive and nontoxic methods wereproposed for cefixime determination. Area under curvespectrophotometric and HPLC methods were depictedfor the micro quantification of Cefixime in highly pureand local market formulation. The area under curve(first technique) used in calculation of the cefiximepeak using a UV-visible spectrophotometer.The HPLC (2nd technique) was depended on thepurification of Cefixime by a C18 separating column250mm (length of column) × 4.6 mm (diameter)andusing methanol 50% (organic modifier) and deionizedwater 50% as a mobile phase. The isocratic flow withrate of 1 mL/min was applied, the temper
... Show More<p>The popularity, great influence and huge importance made wireless indoor localization has a unique touch, as well its wide successful on positioning and tracking systems for both human and assists also contributing to take the lead from outdoor systems in the scope of the recent research works. In this work, we will attempt to provide a survey of the existing indoor positioning solutions and attempt to classify different its techniques and systems. Five typical location predication approaches (triangulation, fingerprinting, proximity, vision analysis and trilateration) are considered here in order to analysis and provide the reader a review of the recent advances in wireless indoor localization techniques and systems to hav
... Show MoreThis research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.
The present study tackles the complex issue of the urgent need for Environmental Auditing (EA) in Iraq in the absence of laws that support environmental management and in the light of the high rates of cancerous diseases in Iraq, which coincided significantly with the increase in oil production, according to the numbers indicated in the Iraqi Ministry of Health. The study aimed to investigate the mediating role of Management Systems (MS) related to the role of EA supporting sustainability reports concerning the reduction of the negative effects of gas emissions from oil companies. We adopted the descriptive approach which relies on studying relationships through a questionnaire that was distributed to a group of workers at Doura Refinery in
... Show MoreWastewater recycling for non-potable uses has gained significant attention to mitigate the high pressure on freshwater resources. This requires using a sustainable technique to treat natural municipal wastewater as an alternative to conventional methods, especially in arid and semi-arid rural areas. One of the promising techniques applied to satisfy the objective of wastewater reuse is the constructed wetlands (CWs) which have been used extensively in most countries worldwide through the last decades. The present study introduces a significant review of the definition, classification, and components of CWs, identifying the mechanisms controlling the removal process within such units. Vertical, horizontal, and hybrid CWs
... Show MoreHM Al-Dabbas, RA Azeez, AE Ali, IRAQI JOURNAL OF COMPUTERS, COMMUNICATIONS, CONTROL AND SYSTEMS ENGINEERING, 2023
Artificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show More