Multiple eliminations (de-multiple) are one of seismic processing steps to remove their effects and delineate the correct primary refractors. Using normal move out to flatten primaries is the way to eliminate multiples through transforming these data to frequency-wavenumber domain. The flatten primaries are aligned with zero axis of the frequency-wavenumber domain and any other reflection types (multiples and random noise) are distributed elsewhere. Dip-filter is applied to pass the aligned data and reject others will separate primaries from multiple after transforming the data back from frequency-wavenumber domain to time-distance domain. For that, a suggested name for this technique as normal move out- frequency-wavenumber domain method for multiple eliminations. The method is tested on a fake reflection event to authorize their validity, and applied to a real field X-profile 2D seismic data from southern Iraq. The results ensure the possibility of internal multiple types existing in the deep reflection data in Iraq and have to remove. So that the interpretation for the true reflectors be valid. The final processed stacked seismic data using normal move out- frequency-wavenumber domain technique shows good, clear, and sharp reflectors in comparison with the conventional normal move out stack data. Open-source Madagascar reproducible package is used for processing all steps of this study and the package is very efficient, accurate, and easy to implement normal move out, frequency-wavenumber domain, Dip-filter programs. The aim of the current study is to separate internal multiples and noise from the real 2D seismic data.
Background: Helicobacter pylori are important gastrointestinal pathogen associated with gastritis, peptic ulcers, and an increased risk of gastric carcinoma. There are several popular methods for detection of H. pylori (invasive and non-invasive methods) each having its own advantages, disadvantages, and limitations, and by using PCR technique the ability to detect H. pylori in saliva samples offers a potential for an alternative test for detection of this microorganism. Materials and methods: The study sample consists of fifty participants of both genders, who undergo Oesophageo-gastrodudenoscopy at the Gastroenterology Department of Al-Kindy Teaching Hospital Baghdad/ Iraq, during five months period from January 2014 to May 2014. They we
... Show MoreBackground: The surgical treatment of pilonidal sinus varies from wide excision and laying the wound open or excision with primary closure or excision with the use of skin graft in some special cases.
Objectives: The objectives of this study is to determine the efficacy of treating non complicated pilonidal sinus disease with minimal excision and primary closure technique, complications and recurrence rate.
Patients and methods: This is a prospective study conducted in shahid ahmed ismaiel hospital in rania – As sulaimania IRAQ during the period from December 2013 to January 2016 and was carried on one hundred (100) consecutive patients with non complicated non recurrent pilonidal sinus patients who were treated with minimal exci
Carbon nanotubes (CNTs) were synthesized via liquefied petroleum gas (LPG) as precursor using flame fragments deposition (FFD) technique. In vitro, biological activates of carbon nanotubes (CNTs) synthesized by FFD technique were investigated. The physiochemical characterizations of synthesized CNTs are similar to other synthesized CNTs and to the standard sample. Pharmaceutical application of synthesized CNTs was studied via conjugation and adsorption with different types of medicines as promote groups. The conjugation of CNTs was performed by adsorption the drugs such as sulfamethoxazole (SMX) and trimethoprim (TMP) on CNTs depending on physical properties of both bonded parts. The synthesized CNTs almost have the same performance in a
... Show MoreIn the field of civil engineering, the adoption and use of Falling Weight Deflectometers (FWDs) is seen as a response to the ever changing and technology-driven world. Specifically, FWDs refer to devices that aid in evaluating the physical properties of a pavement. This paper has assessed the concepts of data processing, storage, and analysis via FWDs. The device has been found to play an important role in enabling the operators and field practitioners to understand vertical deflection responses upon subjecting pavements to impulse loads. In turn, the resultant data and its analysis outcomes lead to the backcalculation of the state of stiffness, with initial analyses of the deflection bowl occurring in conjunction with the measured or assum
... Show MoreThe hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s
... Show MoreThis research sought to present a concept of cross-sectional data models, A crucial double data to take the impact of the change in time and obtained from the measured phenomenon of repeated observations in different time periods, Where the models of the panel data were defined by different types of fixed , random and mixed, and Comparing them by studying and analyzing the mathematical relationship between the influence of time with a set of basic variables Which are the main axes on which the research is based and is represented by the monthly revenue of the working individual and the profits it generates, which represents the variable response And its relationship to a set of explanatory variables represented by the
... Show MoreThyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise
... Show MoreSince the beginning of 21st century, the prices of Agricultural crops have increased. This Increases is accompanied with that increases of crude oil prices and fluctuation of a dollar exchange rate as a dominant currency used in the global trade. The paper aimed to analysis the short run and long run cointegration relationships between prices of some of Agricultural crops imported by Iraq such as wheat and rice crops and both the crude oil prices and the Iraq dinar exchange rate a gained America dollar using ARDL model. The results show the long run equilibrium between they three variable throng the error correction mechanizem. The results also show the significant and economically sound effects of cru
... Show More