The present work reports the performance of three types of polyethersulfone (PES) membrane in the removal of highly polluting and toxic lead Pb2+ and cadmium Cd2+ ions from a single salt. This study investigated the effect of operating variables, including pH, types of PES membrane, and feed concentration, on the separation process. The transport parameters and mass transfer coefficient (k) of the membranes were estimated using the combined film theory-solution-diffusion (CFSD), combined film theory-Spiegler-Kedem (CFSK), and combined film theory-finely-porous (CFFP) membrane transport models. Various parameters were used to estimate the enrichment factors, concentration polarization modulus, and Péclet number. The pH values significantly affected the permeation flux of the Pb2+ solution but only had a slight effect on the Cd2+ solution. However, Cd2+ rejection was highly improved by increasing the pH value. The rejection of the PES membranes increased greatly as the heavy metal concentration rose, while the heavy metal concentration moderately affected the permeation flux. The maximum rejection of Pb2+ in a single-salt solution was 99%, 97.5%, and 98% for a feed solution containing 10 mg Pb/L at pH 6, 6.2, and 5.7, for PES1, PES2, and PES3, respectively. The maximum rejection of Cd2+ in single-salt solutions was 78%, 50.2%, and 44% for a feed solution containing 10 mg Cd/L at pH 6.5, 6.2, and 6.5, for PES1, PES2, and PES3, respectively. The analysis of the experimental data using the CFSD, CFSK, and CFFP models showed a good agreement between the theoretical and experimental results. The effective membrane thickness and active skin layer thickness were evaluated using the CFFP model, indicating that the Péclet number is important for determining the mechanism of separation by diffusion.
PPSU hollow fiber nanofiltration membranes are prepared by applying two concentrations and various extrusion pressures according to the phase inversion method. Cross-sectional area and outer structures were characterized by using scanning electron microscope (SEM) and atomic force microscopy (AFM). In additional to the pore size distribution, either the mean roughness or the mean pore size of the PPSU hollow fiber surfaces was evaluated by AFM. It was found that the morphology of the PPSU fibers had both sponge-like and finger-like structures through different extrusion pressures and PPSU concentrations. The mean pore size and mean roughness for inner and outer surfaces were seen to be decreased with the increase of extrusion pressure at
... Show MoreThe present work aimed to study the efficiency of nanofiltration (NF) and reverse osmosis (RO) membrane for heavy metal removal from wastewater and study the factors affecting the performance of these two membranes: feed concentrations for heavy metal ions, pressure, and flow rate. The experimental results showed, heavy metals concentration in permeate increase with raise in feed concentrations, decline with increase in flow rate. The raise of pressure, heavy metals concentration decreases for RO membrane, but for NF membrane the concentration decrease and then at high pressure increase. The rejection percentage for chromium in NF and RO is 99.7% and 99.9%, for copper is 98.4% and 99.3%, for zinc is 97.9% and 99.5%, for nickel is 97.2% and
... Show MoreComparative Analysis of Economic Policy Stability between Monarchical and Republican Systems: A Theoretical Fundamental Research
Membrane distillation (MD) is a hopeful desalination technique for brine (salty) water. In this research, Direct Contact Membrane Distillation (DCMD) and Air Gap Membrane Distillation (AGMD) will be used. The sample used is from Shat Al –Arab water (TDS=2430 mg/l). A polyvinylidene fluoride (PVDF) flat sheet membrane was used as a flat sheet form with a plate and frame cell. Several parameters were studied, such as; operation time, feed temperature, permeate temperature, feed flow rate. The results showed that with time, the flux decreases because of the accumulated fouling and scaling on the membrane surface. Feed temperature and feed flow rate had a positive effect on the permeate flux, while permeate temperatu
... Show MoreGenerally fossil based fuels are used in internal combustion engines as an energy source.
Excessive use of fossil based fuels diminishes present reserves and increases the air pollution in
urban areas. This enhances the importance of the effective use of present reserves and/or to develop
new alternative fuels, which are environment friendly. Use of alternative fuel is a way of emission
control. The term “Alternative Gaseous Fuels” relates to a wide range of fuels that are in the
gaseous state at ambient conditions, whether when used on their own or as components of mixtures
with other fuels.
In this study, a single cylinder diesel engine was modified to use LPG in dual fuel mode to study
the performance, emis
This paper presents a numerical analysis using ANSYS finite element program to simulate the reinforced concrete slabs with spherical voids. Six full-scale one way bubbled slabs of (3000mm) length with rectangular cross-sectional area of (460mm) width and (150mm) depth are tested as simply supported under two-concentrated load. The results of the finite element model are presented and compared with the experimental data of the tested slabs. Material nonlinearities due to cracking and crushing of concrete and yielding of reinforcement are considered. The general behavior of the finite element models represented by the load-deflection curves at midspan, crack pattern, ultimate load, load-concrete strain curves and failure m
... Show MoreIn this study, thermal characteristics of a two-phase closed heat pipe were investigated experimentally and theoretically. A two-phase closed heat pipe (copper container, Fluorocarbon FC-72 (C6F14) working fluid) was fabricated to examine its performance under the effect of input heat flux range of 250–1253 W/m2 , 70% fill charge ratio and various tilt angles. The temperature distribution along the heat pipe, input heat to evaporator section, and output heat from condenser were monitored. A comprehensive mathematical model was developed to investigate the steadystate heat transfer performance of a two-phase closed heat pipe. A steady state analytical model, is presented to determine important parameters on the design of two-phase close
... Show MoreOne of the main parts in hydraulic system is directional control valve, which is needed in order to operate hydraulic actuator. Practically, a conventional directional control valve has complex construction and moving parts, such as spool. Alternatively, a proposed Magneto-rheological (MR) directional control valve can offer a better solution without any moving parts by means of MR fluid. MR fluid consists of stable suspension of micro-sized magnetic particles dispersed in carrier medium like hydrocarbon oil. The main objectives of this present research are to design a MR directional control valve using MR fluid, to analyse its magnetic circuit using FEMM software, and to study and simulate the performance of this valve. In this research, a
... Show More