Treated effluent wastewater is considered an alternative water resource which can provide an important contribution for using it in different purposes, so, the wastewater quality is very important for knowing its suitability for different uses before discharging it into fresh water ecosystems. The wastewater quality index (WWQI) may be considered as a useful and effective tool to assess wastewater quality by indicating one value representing the overall characteristic of the wastewater. It could be used to indicate the suitability of wastewater for different uses in water quality management and decision making. The present study was conducted to evaluate the Al-Diwaniyah sewage treatment plant (STP) effluent quality based on wastewater quality index (WWQI) for disposal according to Iraqi limitations. Wastewater samples were collected from Al-Diwaniyah STP during 2012-2016 and tested for a comprehensive analysis of physical and chemical analysis. The parameters included Total suspended solids (TSS), Nitrate (NO3), Biological oxygen demand (BOD5), and Chemical oxygen demand (COD). The determination of the WWQI was done using the weighted arithmetic method. The results showed that the effluent BOD5, COD and TSS concentrations were not in the Iraqi standards for effluent disposal. The WWQI of this effluent classified its quality within ranged from poor to very poor according to Iraqi standards (IQS) and very poor to very polluted under the world health standards (WHO), that could cause environmental pollution in the receiving river. The permanent solution is through the proper operation using scientific methods and training the operational staff using technical methods and then future solution, advanced treatment in the plant, by completing both the solutions above will lead to upgrade the effluent quality to achieve the required water standards.
In this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respe
... Show MoreThis study deals with the role of compensation system in improving the quality of educational services (University of Halabja as a Model) also our problem was the following question ; What is the role of compensation system in its different dimensions in improving the quality of educational services? And what is the relationship and impact of using the dimensions of the compensation system to improve the quality of educational services? The hypothesis of the research included the correlation and the impacts between the compensation system and its combined variables in the quality of educational services. This was proved through a field study and the distribution of questionn
... Show MoreThe objective of this research is to measure the training programs and identify the nature and then measure how it reflected on the quality of municipal services provided by the municipal departments investigated by measuring the quality of services based on quality standards, the researcher chose four municipal departments in the Rusafa / Baghdad (164 people) representing the directors and their assistants, officials of the municipal departments, the people and the engineering staff in charge of the task forces as well, including the survey of the views of the concerned persons in the management of the Vocational Training Institute in the Secretariat of the Republic, The quality of the municipal services
... Show Morethe research goal is preparing a list of standard criteria and quality controls for information technology applications to serve the Holy Quran.
To achieve this goal, the researcher has built a list of criteria according to the following steps:
First - identify the key areas covered by the whole list which are:
1 – Standards of system building and implementing with the operating screens.
2 – Standards of display forms including audio and video presentation.
3 – Standards which are related to the program philosophy.
4 - Standards which are related to the program objectives.
... Show MoreArtificial Neural Network (ANN) model's application is widely increased for wastewater treatment plant (WWTP) variables prediction and forecasting which can enable the operators to take appropriate action and maintaining the norms. It is much easier modeling tool for dealing with complex nature WWTP modeling comparing with other traditional mathematical models. ANN technique significance has been considered at present study for the prediction of sequencing batch reactor (SBR) performance based on effluent's (BOD5/COD) ratio after collecting the required historical daily SBR data for two years operation (2015-2016) from Baghdad Mayoralty and Al-Rustamiya WWTP office, Iraq. The prediction was gotten by the application of a feed-forwa
... Show MoreThe current study deals with the performance of constructed wetland (CW) incorporating a microbial fuel cell (MFC) for wastewater treatment and electricity generation. The whole unit is referred to as CW-MFC. This technique involves two treatments; the first is an aerobic treatment which occurs in the upper layer of the system (cathode section) and the second is anaerobic biological treatment in the lower layer of the system (anode section). Two types of electrode material were tested; stainless steel and graphite. Three configurations for electrodes arrangement CW-MFC were used. In the first unit of CW-MFC, the anode was graphite plate (GPa) and cathode was also graphite plate (GPc), in the second CW-MFC unit, the anode was stainless steel
... Show More