Carbonate matrix stimulation technology has progressed tremendously in the last decade through creative laboratory research and novel fluid advancements. Still, existing methods for optimizing the stimulation of wells in vast carbonate reservoirs are inadequate. Consequently, oil and gas wells are stimulated routinely to expand production and maximize recovery. Matrix acidizing is extensively used because of its low cost and ability to restore the original productivity of damaged wells and provide additional production capacity. The Ahdeb oil field lacks studies in matrix acidizing; therefore, this work provided new information on limestone acidizing in the Mishrif reservoir. Moreover, several reports have been issued on the difficulties encountered during the stimulation operation of the Ahdeb oil field, particularly for the development of the Mishrif reservoir. Since the new core flooding system is built to operate safely and straightforwardly. This study introduced the results of Matrix acidizing experiments, covering the most recent developments in linear core flooding. High-permeability flow pathways are created, and a longer and wider wormhole was generated at a high acid injection rate (6.67 cc/min). The acid efficiency curve yielded the lowest pore volume injected at the breakthrough of the PV_(bt-opt) is 2.73 and the v_(i-opt)=0.6 cm/min; thus, the optimum injection rate that results in an optimal possible wormhole and the least quantity of acid being used for this reservoir is 2.16 cc/min. This research evaluated the impact of matrix acidizing treatment on acoustic characteristics, which studies show are lacking or have never been investigated previously. Furthermore, in the assessment of geomechanical rock properties and elastic and petrophysical parameters before and after acid injection, one of the new concepts discovered during the lab experiment observation of the acoustic waveform before and after acid treatment for the tested rock sample is that the initial arrival time before acid treatment is 21.6 microseconds, with a delay of 31.2 microseconds attributed to the wormhole channel and mineral disintegration. CT-Scan applications in matrix acidizing were investigated in this research; additionally, a 3D view of plug samples was constructed to represent the wormhole extension via CT-processing software. A license of Stimpro Stimulation Software has been used to validate the experimental work to the field scale, making it the most comprehensive instrument for planning and monitoring matrix acid treatment and utilizing actual data to provide a far better knowledge of the well's reaction, with methods that represent the reality of what is happening in the reservoir before, during, and after matrix acid treatments, through the post-treatment skin factor which is the most often utilized statistic for analyzing stimulation treatments and relies on the geometry of the wormholed zone. The acid treatment evaluated for the well AD-12, primarily for the zone Mi4; matrix acid treatments can have their production behavior predicted or matched using the reservoir simulation and production analysis option, employing the numerical simulation license software Petrel (Schlumberger) and Rubis (KAPPA) to determine the efficacy of previous treatments and the economics associated with future treatments. The estimated oil gain volume and percentage for the Mi4 unit in Ad-12 using particularly skin value -3.97 computed from Stimpro software for real stimulation acid job, it is yield enhancement in production of oil gain volume 6154 barrels as well as 105% increase of gain percentage for three months after matrix acidizing.
Titanium-dioxide (TiO2) nanoparticles suspended in water, and ethanol based fluids have been prepared using one step method and characterized by scanning electron microscopy (SEM), and UV–visible spectrophotometer. The TiO2 nanoparticles were added to base fluids with different volume concentrations from 0.1% to1.5% by dispersing the synthesized nanoparticles in deionized water and ethanol solutions. The effective thermal conductivity, viscosity and pH of prepared nanofluids at different temperatures from 15 to 30 oC were carried out and investigated. It was observed that the thermal conductivity, pH, and viscosity of nanofluids increases with the increase in TiO2 nanoparticle volume fraction
... Show MoreOne of the costliest problems facing the production of hydrocarbons in unconsolidated sandstone reservoirs is the production of sand once hydrocarbon production starts. The sanding start prediction model is very important to decide on sand control in the future, including whether or when sand control should be used. This research developed an easy-to-use Computer program to determine the beginning of sanding sites in the driven area. The model is based on estimating the critical pressure drop that occurs when sand is onset to produced. The outcomes have been drawn as a function of the free sand production with the critical flow rates for reservoir pressure decline. The results show that the pressure drawdown required to
... Show MoreShiranish has been studied at Hijran section near Erbil city, NE Iraq. Fifty two thin-sections were prepared to study them under polarized microscope, to determine the petrographic component, organic content and digenetic processes. Rock units subdivided into four rock beds, as follows: dolostone, foraminiferal biomicrite, poorly washed biomicrite and micrite. Vertical succession of Shiranish Formation refers to off-shore quite marine environment.
Four different spectrophotometric methods are used in this study for the determination of Sulfamethoxazole and sulfanilamide drugs in pharmaceutical compounds, synthetic samples, and in their pure forms. The work comprises four chapters which are shown in the following: Chapter One: Includes a brief for Ultraviolet-Visible (UV-VIS) Absorption spectroscopy, antibacterial drugs and sulfonamides with some methods for their determination. The chapter lists two methods for optimization; univariate method and multivariate method. The later includes different types, two of these were mentioned; simplex method and design of experiment method. Chapter Two: Includes reaction of the two studied drugs with sodium nitrite and hydrochloric acid for diazo
... Show MoreIn this study, six square reinforced concrete flat plates with dimensions of (1500×1500×100) mm were tested under a concentrated load applied on a column located at the center of the slabs. One of these slabs was the control specimen, whereas, in the others, steel angles (steel collars) were used, fixed at the connection region between the slab and the column to investigate the effect of the presence of these collars on punching shear strength. Five thicknesses were used (4, 5, 6, 8, 10mm) with constant legs of angles (75×75) mm of the steel collars to investigate the effects on the punching shear resistance with respect to the control slab. The results of the experimental study show that the punching shear resistance increased b
... Show MoreIron , Cobalt , and Nickel powders with different particle sizes were subjected to sieving and He-Ne laser system to determine the particle size . 1wt% from each powders was blended carefully with 99wt% from Iraqi oil . Microscopic examination were carried for all samples to reveal the particle size distribution . A Siemens type SRS sequential wavelength dispersive(WDS) X-ray spectrometer was used to analyze all samples , and the XRF intensity were determined experimentally and theoretically for all suspended samples , Good agreement between theoretical and experimental results were found .
Precise forecasting of pore pressures is crucial for efficiently planning and drilling oil and gas wells. It reduces expenses and saves time while preventing drilling complications. Since direct measurement of pore pressure in wellbores is costly and time-intensive, the ability to estimate it using empirical or machine learning models is beneficial. The present study aims to predict pore pressure using artificial neural network. The building and testing of artificial neural network are based on the data from five oil fields and several formations. The artificial neural network model is built using a measured dataset consisting of 77 data points of Pore pressure obtained from the modular formation dynamics tester. The input variables
... Show MoreSAPO-11 is synthesized from silicoaluminophosphate in the presence of di-n-propylamine as a template. The results show that the sample obtained has good crystallinity, 396m2/g BET surface area, and 0.35 cm3/g pore volume. The hydroisomerization activity of (0.25)Pt (1)Zr (0.5)W/SAPO-11 catalyst was determined using n-decane and base oil. All hydroisomerization experiments of n-decane were achieved at a fixed bed plug flow reactor at a temperature range of 200-275°C and LHSV 0.5-2h-1. The results show that the n-decane conversion increases with increasing temperature and decreasing LHSV, the maximum conversion of 66.7 % was achieved at temperature 275°C and LHSV of 0.5 h-1. Meanwhile, the same catalyst was used to improve base oil spec
... Show MoreSAPO-11 is synthesized from silicoaluminophosphate in the presence of di-n-propylamine as a template. The results show that the sample obtained has good crystallinity, 396m2/g BET surface area, and 0.35 cm3/g pore volume. The hydroisomerization activity of (0.25)Pt (1)Zr (0.5)W/SAPO-11 catalyst was determined using n-decane and base oil. All hydroisomerization experiments of n-decane were achieved at a fixed bed plug flow reactor at a temperature range of 200-275°C and LHSV 0.5-2h-1. The results show that the n-decane conversion increases with increasing temperature and decreasing LHSV, the maximum conversion of 66.7 % was achieved at temperature 275°C and LHSV of 0.5 h-1
... Show MoreSUMMARY. – Nanocrystalline thin fi lms of CdS are deposited on glass substrate by chemical bath deposited technique using polyvinyl alcohol (PVA) matrix solution. Crystallite size of the nanocrystalline films are determining from broading of X-ray diffraction lines and are found to vary from 0.33-0.52 nm, an increase of molarity the grain size decreases which turns increases the band gap. The band gap of nanocrystalline material is determined from the UV spectrograph. The absorption edge and absorption coefficient increases when the molarity increases and shifted towards the lower wavelength.