This paper presents a modified training method for Recurrent Neural Networks. This method depends on the Non linear Auto Regressive (NARX) model with Modified Wavelet Function as activation function (MSLOG) in the hidden layer. The modified model is known as Modified Recurrent Neural (MRN). It is used for identification Forward dynamics of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot. This model is also used in the design of Direct Inverse Control (DIC). This method is compared with Recurrent Neural Networks that used Sigmoid activation function (RS) in the hidden layer and Recurrent Neural Networks with Wavelet activation function (RW). Simulation results shows that the MRN model is better than RS and RW in identification the forward dynamics and provides good results in the Direct Inverse Neuro- Controller (DINC).
The present work provides theoretical investigation of laser photoacoustic one dimensional imaging to detect a blood vessel or tumor embedded within normal tissue. The key task in photoacoustic imaging is to have acoustic signal that help to determine the size and location of the target object inside normal tissue. The analytical simulation used a spherical wave model representing target object (blood vessel or tumor) inside normal tissue. A computer program in MATLAB environment has been written to realize this simulation. This model generates time resolved acoustic wave signal that include both expansion and contraction parts of the wave. The photoacoustic signal from the target object is simulated for a range of laser pulse duration 1
... Show MoreWith the recent developments of technology and the advances in artificial intelligent and machine learning techniques, it becomes possible for the robot to acquire and show the emotions as a part of Human-Robot Interaction (HRI). An emotional robot can recognize the emotional states of humans so that it will be able to interact more naturally with its human counterpart in different environments. In this article, a survey on emotion recognition for HRI systems has been presented. The survey aims to achieve two objectives. Firstly, it aims to discuss the main challenges that face researchers when building emotional HRI systems. Secondly, it seeks to identify sensing channels that can be used to detect emotions and provides a literature review
... Show MoreFive species of Lactic acid bacteriawere isolated from raw milk, yoghurt, vegetables and pickles, Lactobacillus plantarum, Lactobacillus acidophilus, Lactobacillus brevis, Lactobacillus casei and Lactobacillus bulgaricus isolates were identified by 16S rRNA gene. Evaluate of antimicrobial activity against all the bacterial strains Staphylococcus aureus, Salmonella spp., Pseudomonas fluorescens, Escherichia coli, Bacillus cereus and Bacillus subtilis. It showed that bacteriocin of Lactic acid bacteriamore effective than supernatant of lactic acid bacteria, the results showed that isolatemost efficient isolate belonging to Lactobacillus brevis, the diameter of the inhibition of the bacteriocin of Lactobacillus brevis were 27.7, 26.3 and 25.1
... Show MoreThe hydrolysis of urea by the enzyme urease is significant for increasing the irroles in human pathogenicity, biocementation, soil fertilizer, and subsequently in soil improvement. This study devoted to the isolation of urease from urea-rich soil samples collected from seven different locations. Isolation of the various bacterial species was conducted using nutrient agar. The identity of isolated urease was based on morphological characteristics and standard microbiological and biochemical procedures. The urease producing strains of bacteria were obtained using the urease hydrolysis test. The bacterial isolates produced from soil samples collected from different environments and treat
Background: Obesity is a worldwide challenge and is closely
connected to many metabolic diseases. Two types of
adipose tissue, white adipose tissue (WAT) and brown
adipose tissue (BAT) have been identified. White fat cells
store chemical energy, brown adipocytes defend against
hypothermia, obesity and diabetes.
Objective: To localize and quantify brown adipocytes in
human subcutaneous (S) and visceral (V) adipose tissue by
histology and immunohistochemistry.
Type of the study: A cross –sectional study.
Methods: Adipose tissue was obtained from histopathology
specimens taken from ten patients, of different age, sex and
body mass index (BMI), undergoing surgery for different
pathologies
This study is designed to isolate and molecular identification of C. gattii, C. gattii is pathogenic yeast and effect immunocomposed and immunocompetent, Methods: collect 50 samples from eucalyptus leaves. The collection time was extended from November 2021 to February 2022 and then culture at SDA, Cryptococcus Differential Agar esculin agar and Eucalyptus leaves agar, Brain heart infusion agar with methyldopa and Brain heart infusion agar with methyldopa media, biochemical test including urease test, and then confirm identification by molecular identification by PCR technique sequencing and genetic analysis. The results showed that 4 swaps taken from eucalyptus leaves included cryptococcus neoformans. This study indicated that the virulenc
... Show MoreJM Karhoot, AA Noaimi, WF Ahmad, The Iraqi Postgraduate Medical Journal, 2012 - Cited by 7
This study was aimed to one of the most prevalent causes for endodontic treatment failure is the presence of Enterococcus faecalis bacterium within teeth root canals. To achieve successful treatment, it is so important to study E. faecalis behavior. The aim of study was to investigate biofilm production and antibiotic sensitivity of E. faecalis isolated from root canals. Results showed isolation of E. feacalis (65%) of samples, identified by specific gene by PCR technique. Most isolates were sensitive to Imipenem and resistant to Erythromycin, Clindamycin, Tetracycline and Trimethoprim. Strong biofilm production was detected among 29.5% of highest antibiotic resistant isolates. The results may indicate that infected root canals with E. feac
... Show MoreThe use of real-time machine learning to optimize passport control procedures at airports can greatly improve both the efficiency and security of the processes. To automate and optimize these procedures, AI algorithms such as character recognition, facial recognition, predictive algorithms and automatic data processing can be implemented. The proposed method is to use the R-CNN object detection model to detect passport objects in real-time images collected by passport control cameras. This paper describes the step-by-step process of the proposed approach, which includes pre-processing, training and testing the R-CNN model, integrating it into the passport control system, and evaluating its accuracy and speed for efficient passenger flow
... Show More