Quantum key distribution (QKD) provides unconditional security in theory. However, practical QKD systems face challenges in maximizing the secure key rate and extending transmission distances. In this paper, we introduce a comparative study of the BB84 protocol using coincidence detection with two different quantum channels: a free space and underwater quantum channels. A simulated seawater was used as an example for underwater quantum channel. Different single photon detection modules were used on Bob’s side to capture the coincidence counts. Results showed that increasing the mean photon number generally leads to a higher rate of coincidence detection and therefore higher possibility of increasing the secure key rate. The secure key rate can reach 0.0239 (bits/pulse) with a quantum bit error rate (QBER) of 3.2% for the free space channel and 1.5% for the simulated sea-water channel. The security parameters for each value of the mean photon number closely align with the corresponding theoretical predictions. However, some discrepancies were observed, primarily due to a mismatch in photon detection efficiency for SPDMs and system fluctuations. The theoretical calculations also predict that using coincidence detection, the key can be distributed over distances of up to 195 km.
By definition, the detection of protein complexes that form protein-protein interaction networks (PPINs) is an NP-hard problem. Evolutionary algorithms (EAs), as global search methods, are proven in the literature to be more successful than greedy methods in detecting protein complexes. However, the design of most of these EA-based approaches relies on the topological information of the proteins in the PPIN. Biological information, as a key resource for molecular profiles, on the other hand, acquired a little interest in the design of the components in these EA-based methods. The main aim of this paper is to redesign two operators in the EA based on the functional domain rather than the graph topological domain. The perturb
... Show MoreObjective Using two complementary techniques of virus detection human papillomavirus (HPV)[capture of hybrids (CH) and polymerase chain reaction (PCR)], relate the cytological study and/or cervical biopsy with high-risk HPV (HPV-HR) genotypes presence, as well as relating their viral load (VL). Methods About 272 women, who presented most cell alterations compatible with lesions cervical HPV, which has been detected in all high risk by the CH method and HPV genotype detection by PCR. Results In 22% of the patients it was not detected HPV DNA. Genotype 16 and/or 18 was prevalent and was found in 33% of the 212 women studied, meanwhile, mixed infections were found by several genotypes in 25%. In as for the histological lesions found, in 61 pat
... Show MoreListeria spp. is one of the abortion causative agents in animals, especially in ruminants. This work aimed to detect Listeria spp. in milk and aborted fetus cows in Iraq. A total of 50 organ samples from aborted cow fetuses, including (brain, liver, and spleen), and 50 milk samples from the same aborted cows were collected from Baghdad farms, Iraq from (October 2023- March 2024). The bacteria were identified by conventional culture methods, biochemical tests, and the VITEK2 compact system, followed by molecular confirmation. The antimicrobial resistance pattern assay was performed using the disc diffusion method against eight antibiotic agents, and the L.monocytogenes virulence genes involving prfA,actA, and hylA genes were detected using t
... Show MoreWe observed strong nonlinear absorption in the CdS nanoparticles of dimension in the range 50-100 nm when irradiant with femtosecond pulsed laser at 800 nm and 120 GW/cm 2 irradiance intensity. The repetition rate and average power were 250 kHz and
Deepfake is a type of artificial intelligence used to create convincing images, audio, and video hoaxes and it concerns celebrities and everyone because they are easy to manufacture. Deepfake are hard to recognize by people and current approaches, especially high-quality ones. As a defense against Deepfake techniques, various methods to detect Deepfake in images have been suggested. Most of them had limitations, like only working with one face in an image. The face has to be facing forward, with both eyes and the mouth open, depending on what part of the face they worked on. Other than that, a few focus on the impact of pre-processing steps on the detection accuracy of the models. This paper introduces a framework design focused on this asp
... Show MoreThe dynamics of a single condensing two-phase bubble of two different dispersed-continuous systems were studied. The systems were, CCl4 - water and CCl4 - 100% glycerol. Cinephotography was used to determine the change in height, diameter and time. These results were used to determine the experimental rise velocity of the bubble, which was compared with a theoretical one based on some equations used. It was found that the velocity of the first system remained almost constant, while it decreased gradually for the second system.
Let R be a commutative ring with identity, and let M be a unitary left R-module. M is called Z-regular if every cyclic submodule (equivalently every finitely generated) is projective and direct summand. And a module M is F-regular if every submodule of M is pure. In this paper we study a class of modules lies between Z-regular and F-regular module, we call these modules regular modules.
In this work a fragile watermarking scheme is presented. This scheme is applied to digital color images in spatial domain. The image is divided into blocks, and each block has its authentication mark embedded in it, we would be able to insure which parts of the image are authentic and which parts have been modified. This authentication carries out without need to exist the original image. The results show the quality of the watermarked image is remaining very good and the watermark survived some type of unintended modification such as familiar compression software like WINRAR and ZIP
Human skin detection, which usually performed before image processing, is the method of discovering skin-colored pixels and regions that may be of human faces or limbs in videos or photos. Many computer vision approaches have been developed for skin detection. A skin detector usually transforms a given pixel into a suitable color space and then uses a skin classifier to mark the pixel as a skin or a non-skin pixel. A skin classifier explains the decision boundary of the class of a skin color in the color space based on skin-colored pixels. The purpose of this research is to build a skin detection system that will distinguish between skin and non-skin pixels in colored still pictures. This performed by introducing a metric that measu
... Show More