Short Multi-Walled Carbon Nanotubes functionalized with OH group (MWCNTs-OH) were used to synthesize flexible MWCNTs networks. The MWCNTs suspension was synthesized using Benzoquinone (BQ) and N, N Dimethylformamide alcohol (DMF) in specific values and then deposited on filter paper by filtration from suspension (FFS) method. Polypyrrole (PPy) conductive polymer doped with metallic nanoparticles (MNPs) prepared using in-situ chemical polymerization method. To improve the properties of the MWCNTs networks, a coating layer of (PPy) conductive polymer, PPy:Ag nanoparticles, and PPy: Cu nanoparticles were applied to the network. The fabricated networks were characterized using an X-ray diffractometer (XRD), UV-Vis. spectrometer, and Atomic Force Microscope (AFM). XRD results revealed that the broadening for the (002) peak decreased after being coated with PPy and increased for the doped samples with MNPs, indicating on decrease in the crystalline size (MWCNTs/PPy) sample and increasing for doped ones with Ag and Cu MNPs. AFM images revealed that the surface roughness of the MWCNTs-OH network decreased after being coated with PPy, PPy: Ag, and PPy: Cu. With the help of AFM and XRD results, the CNTs contain 14 layers, while the inner and outer diameters were 18.2 nm and 27 nm receptivity. The UV-Vis. spectrum of MWCNTs showed several peaks, the highest in the 350 nm range. The coated of MWCNTs greatly affected the absorption spectrum, with many bands appearing between 300 to 450 nm and increasing the absorbance along the overall spectrum. For samples doped with Ag NPs and Cu NPs, a weak absorption peak of the plasmonic resonance frequency of the metallic nanoparticles. Analysis of Raman spectra shows that (ID/IG) ratios for all networks are less than one, which prove that the fabricated networks have few impurities and have good homogeneity. This work aimed to synthesize and characterize a flexible MWCNTs network and develop it by coated with a layer of conductive polymer and metallic nanoparticles for gas sensing application using quick and straightforward preparation methods.
Plasma alkaline phosphatase isozyme in Iraqi fowl was studied by acrylamide gel electrophoresis. Two phenotypes fast and slow, were observed. These two phenotypes have been shown to be controlled by one single autosomal locus with two allel AKPF and AKPS. The gene frequency of AKPS is dominant over the AKPF. The result indicated that gene frequency of AKPF in leghorn and new hamshire was more frequent than in local Iraqi birds. Birds of fast isozyme type had higher 90 – day's egg production and egg weights as compared to those with slow isozyme. It is concluded that the fast isozyme can be used as gene marker for spotting out pullets with high body weight sexual maturity, high egg production and high egg weight.
In a connected graph , the distance function between each pair of two vertices from a set vertex is the shortest distance between them and the vertex degree denoted by is the number of edges which are incident to the vertex The Schultz and modified Schultz polynomials of are have defined as:
respectively, where the summations are taken over all unordered pairs of distinct vertices in and is the distance between and in The general forms of Schultz and modified Schultz polynomials shall be found and indices of the edge – identification chain and ring – square graphs in the present work.
Polyaniline (PANI) and Ag/PANI nanocomposite thin films have prepared by microwave induced plasma. The Ag powder of average particle size of 50 nm, were used to prepare Ag/PANI nanocomposite thin films. The Ag/PANI nanocomposite thin films prepared by polymerization in plasma and characterized by UV-VIS, FTIR, AFM and SEM to study the effect of silver nanoparticles on the optical properties, morphology and structure of the thin films. The optical properties studies showed that the energy band gap of the Ag/PANI (5%wt silver) decreased from 3.6 to 3.2 eV, where the substrate location varied from 4.4 to 3.4 cm from the axis of the cylindrical plasma chamber. Also the optical energy gap decreased systematically from 3.3 to 3 eV with increas
... Show MoreIn this study, Zinc oxide nanostructures were synthesized via a hydrothermal method by using zinc nitrate hexahydrate and sodium hydroxide as a precursor. Three different annealing temperatures were used to study their effect on ZnO NSs properties. The synthesized nanostructure was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Atomic force microscope (AFM), and Fourier Transform Infrared Spectroscopy (FTIR). Their optical properties were studied by using UV -visible spectroscopy. The XRD analysis confirms that all ZnO nanostructures have the hexagonal wurtzite structure with average crystallite size within the range of (30.59 - 34
... Show MorePharmaceuticals have been widely remaining contaminants in wastewater, and diclofenac is the most common pharmaceutical pollutant. Therefore, the removal of diclofenac from aqueous solutions using activated carbon produced by pyrocarbonic acid and microwaves was investigated in this research. Apricot seed powder and pyrophosphoric acid (45 wt%) were selected as raw material and activator respectively, and microwave irradiation technique was used to prepare the activated carbon. The raw material was impregnated in pyrophosphoric acid at 80◦C with an impregnation ratio of 1: 3 (apricot seeds to phosphoric acid), the impregnation time was 4 h, whereas the power of the microwave was 700 watts with a radiation time of 20 min. A series o
... Show MoreThis article presents the simultaneous adsorption of bimetal Cu2+ and Zn2+ from an aqueous solution using activated carbon synthesized from a plum seed precursor by sulfuric acid and microwave activation: plum seeds chemically activated by 45% (w/w) sulfuric acid with 2:1 ratio for 4 h, then carbonized for 2 h at 700 °C and the product obtained activated in a microwave oven for 20 min at 700 W for final of activation. Plum seeds and activated carbon produced were characterized in terms of their physical and chemical composition using Brunauer–Emmett–Teller measurements, field emission scanning electr
As a result of rapid industrialization and population development, toxic chemicals have been introduced into water systems in recent decades. Because of its excellent efficiency and simple design, the three-dimensional (3D) electro-Fenton method has been used for the treatment of wastewater. The goal of the current study is to explore the efficiency of phenol removal by the 3D electro-Fenton process, which is one of the advanced oxidation processes (AOPs). In the present work, the effect of the addition of granular activated carbon (GAC) particles to the electro-Fenton system as the third electrode would be investigated in the presence of graphite as the anode and nickel foam as the cathode, which is the source of electro-generated hydrogen
... Show MoreArtificial roughness on the absorber plate of a Solar Air Heater (SAH) is a popular technique for increasing its effective efficiency. The study investigated the effect of geometrical parameters of discrete multi-arc ribs (DMAR) installed below the SAH absorber plate on the effective efficiency. The effects of major roughness factors, such as number of gaps (Ng = 1-4), rib pitch (p/e = 4-16), rib height (e/D = 0.018-0.045), gab width (wg/e = 0.5-2), angle of attack ( = 30-75), and Reynolds number (Re= 2000-20000) on the performance of a SAH are studied. The performance of the SAH is evaluated using a top-down iterative technique. The results show that as Re rises, SAH-effective DMAR's efficiency first ascends to a specified value o
... Show MoreIn earthquake engineering problems, uncertainty exists not only in the seismic excitations but also in the structure's parameters. This study investigates the influence of structural geometry, elastic modulus, mass density, and section dimension uncertainty on the stochastic earthquake response of a multi-story moment resisting frame subjected to random ground motion. The North-south component of the Ali Gharbi earthquake in 2012, Iraq, is selected as ground excitation. Using the power spectral density function (PSD), the two-dimensional finite element model of the moment resisting frame's base motion is modified to account for random ground motion. The probabilistic study of the moment resisting frame structure using stochastic fin
... Show More