Preferred Language
Articles
/
fBbgFooBVTCNdQwCQ5Dm
Linear block code decoder using neural network
...Show More Authors

Scopus Clarivate Crossref
View Publication
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Engineering
Artificial Neural Network Models to Predict the Cost and Time of Wastewater Projects
...Show More Authors

Infrastructure, especially wastewater projects, plays an important role in the life of residential communities. Due to the increasing population growth, there is also a significant increase in residential and commercial facilities. This research aims to develop two models for predicting the cost and time of wastewater projects according to independent variables affecting them. These variables have been determined through a questionnaire distributed to 20 projects under construction in Al-Kut City/ Wasit Governorate/Iraq. The researcher used artificial neural network technology to develop the models. The results showed that the coefficient of correlation R between actual and predicted values were 99.4% and 99 %, MAPE was

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Mon Apr 11 2011
Journal Name
Icgst
Employing Neural Network and Naive Bayesian Classifier in Mining Data for Car Evaluation
...Show More Authors

In data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.

Publication Date
Sun Mar 08 2015
Journal Name
All Days
Distribution of New Horizontal Wells by the Use of Artificial Neural Network Algorithm
...Show More Authors
Abstract<p>It is an established fact that substantial amounts of oil usually remain in a reservoir after primary and secondary processes. Therefore; there is an ongoing effort to sweep that remaining oil. Field optimization includes many techniques. Horizontal wells are one of the most motivating factors for field optimization. The selection of new horizontal wells must be accompanied with the right selection of the well locations. However, modeling horizontal well locations by a trial and error method is a time consuming method. Therefore; a method of Artificial Neural Network (ANN) has been employed which helps to predict the optimum performance via proposed new wells locations by incorporatin</p> ... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Thu Jun 30 2011
Journal Name
Al-khwarizmi Engineering Journal
Performance Improvement of Neural Network Based RLS Channel Estimators in MIMO-OFDM Systems
...Show More Authors

The objective of this study was tointroduce a recursive least squares (RLS) parameter estimatorenhanced by using a neural network (NN) to facilitate the computing of a bit error rate (BER) (error reduction) during channels estimation of a multiple input-multiple output orthogonal frequency division multiplexing (MIMO-OFDM) system over a Rayleigh multipath fading channel.Recursive least square is an efficient approach to neural network training:first, the neural network estimator learns to adapt to the channel variations then it estimates the channel frequency response. Simulation results show that the proposed method has better performance compared to the conventional methods least square (LS) and the original RLS and it is more robust a

... Show More
View Publication Preview PDF
Publication Date
Wed Mar 31 2021
Journal Name
Electronics
Adaptive Robust Controller Design-Based RBF Neural Network for Aerial Robot Arm Model
...Show More Authors

Aerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d’A

... Show More
View Publication
Scopus (40)
Crossref (38)
Scopus Clarivate Crossref
Publication Date
Wed Oct 18 2023
Journal Name
Ieee Access
A New Imputation Technique Based a Multi-Spike Neural Network to Handle Missing Data in the Internet of Things Network (IoT)
...Show More Authors

View Publication
Scopus (10)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Wed Mar 01 2023
Journal Name
Journal Of Engineering
Producing Load Bearing Block Using LECA as Partial Replacement of Coarse Aggregate
...Show More Authors

The ability to produce load-bearing masonry units adopting ACI 211.1 mix design using (1:3.2:2.5) as (cement: fine aggregate: coarse aggregate) with slump range (25-50mm) which can conform (dimension, absorption, and compressive strength) within IQS 1077/1987 requirements type A was our main goal of the study. The ability to use low cement content (300 kg/m3) to handle our market price products since the most consumption in wall construction for low-cost buildings was encouraging. The use of (10 and 20%) of LECA as partial volume replacement of coarse aggregate to reduce the huge weight of masonry blocks can also be recommended. The types of production of the load-bearing masonry units were A and B for (

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Jun 01 2017
Journal Name
Iosr Journal Of Computer Engineering
Lossy Image Compression Using Wavelet Transform, Polynomial Prediction And Block Truncation Coding
...Show More Authors

View Publication
Crossref
Publication Date
Thu Nov 03 2022
Journal Name
Sensors
A Novel Application of Deep Learning (Convolutional Neural Network) for Traumatic Spinal Cord Injury Classification Using Automatically Learned Features of EMG Signal
...Show More Authors

In this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesi

... Show More
View Publication
Scopus (9)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
An Observation and Analysis the role of Convolutional Neural Network towards Lung Cancer Prediction
...Show More Authors

Lung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Crossref