Thin films Tin sulfide SnS pure and doped with different ratios of Cu (X=0, 0.01, 0.03 and 0.05) were prepared using thermal evaporation with a vacuum of 4*10-6mbar on two types of substrates n-type Si and glass with (500) nm thickness for solar cell application. X-ray diffraction and AFM analysis were carried out to explain the influence of Cu ratio dopant on structural and morphological properties respectively. SnS phase appeared forming orthorhombic structure with preferred orientation (111), increase the crystallinity degree and surface roughness with increase Cu ratio. UV/Visible measurement revealed the decrease in energy gap from 1.9eV for pure SnS to 1.5 for SnS: Cu (0.05) making these samples suitable for photovoltaic application. On the other hand, Hall Effect indicated the high percentage of Cu increased carrier concentration and mobility. Current-voltage characteristics of p-SnS: Cu / n-Si demonstrate good photovoltaic effect as ratios of Cu increased and the contact parameters which obtained from these measurement show good dependence on doping concentration. In addition, 0.05 of Cu doping was an optimum level of concentration doping increase the efficiency of SnS: Cu /Si solar cell to 3.5%.
A new ligand [4-Methoxy -N-(pyrimidine-2-ylcarbamothioyl) benzamide] (MPB) was synthesized by reactioniofi(4-Methoxyibenzoyliisothiocyanate)withi(2-aminopyri-midine). The Ligand was characterized by elemental micro analysis (C.H.N.S),(FT-IR) (UV- Vis) and (1Hi,13CNMR)spectra. Some transition metals complexes of this ligand were prepared and characterized by (FT-IR, UV-Vis) spectra conductivity measurements magnetic susceptibility and atomic absorption. From the obtained results the molecular formula of all complexes was suggested to be [M(MPB)2Cl2] (M+2i=Cu, Mn, Co ,Ni ,Zn ,Cd and Hg),the proposed geometrical structure for all complexes was an octahedral.
The δ-mixing of γ-transitions in 70As populated in the 32 70 70 33 Ge p n As (, ) γ reaction is calculated in the present work by using the a2-ratio methods. In one work we applied this method for two cases, the first one is for pure transition and the sacend one is for non pure transition, We take into account the experimental a2-coefficient for previous works and δ -values for one transition only.The results obtained are, in general, in a good agreement within associated errors, with those reported previously , the discrepancies that occur are due to inaccuracies existing in the experimental data of the previous works.
Reaction of  p-fluoro benzoic acid with the thiosemicarbazide and salcialdehyde gave the new bidentate ligand .The prepared ligand Identified by FT-I.R and U.V-Visible spectcopic technique .Treatment of the prepared   ligand   with following metal ions  M=Tb(III),Eu(III),Nd(III) and La(III) ,in ethanol with a (1:1) M:L ratio and at pH=7 yielded series of neutral complexes as the general formula  [M LCl (H O ]. The prepared complexes were characterized using (FT-IR, UV-Vis) spectra , melting point, molar conductivity measurements . chloride ion content were also evolution by (mhor method) . The proposed structure of the complexes using program , chem office 3D(2004) .
In this work, chemical spray pyrolysis deposition (CSP) technique was used to prepare a mixed In2O3-CdO thin films with different CdO content (10, 30 and 50)%volume ratio on glass substrates at 150 ᵒC substrate temperature. The surface morphology and structural properties were measured to find the optimum conditions to improve thin films properties for using as photo detector. Current –Time, the sensitivity and response speed vary for each mixture. Samples with 10% vol. CdO content has square pulse response with average rise time nearly 1s and fall time 1s.
In this work, diamond-like carbon (DLC) thin films were prepared from Cyclohexane. Thin films were deposited on quartz substrate by atmospheric pressure Argon plasma jet system. The plasma jet system was applying high voltage sinusoidal waves of frequency 28 kHz and potential difference of 7.5kV peak to peak across the electrodes. The effect of annealing at 400, 500 and 600 °C under vacuum for two hours on optical properties and structural properties of the DLC thin films were investigated. This effect was clarified by X-ray diffraction (XRD), FTIR, UV-Visible absorption, Scanning Electron Microscopy (SEM) and Raman Spectroscopy. The X-ray diffraction patterns for the annealing DLC thin films show two broad peaks at 2θ, 26.62° and 51.58
... Show MoreUndoped and Co-doped zinc oxide (CZO) thin films have been prepared by spray pyrolysis technique using solution of zinc acetate and cobalt chloride. The effect of Co dopants on structural and optical properties has been investigated. The films were found to exhibit maximum transmittance (~90%) and low absorbance. The structural properties of the deposited films were examined by x-ray diffraction (XRD). These films, deposited on glass substrates at (400? C), have a polycrystalline texture with a wurtzite hexagonal structure, and the grain size was decreased with increasing Co concentration, and no change was observed in lattice constants while the optical band gap decreased from (3.18-3.02) eV for direct allowed transition. Other parameters
... Show MoreThis paper reports the effect of Mg doping on structural and optical properties of ZnO prepared by pulse laser deposition (PLD). The films deposited on glass substrate using Nd:YAG laser (1064 nm) as the light source. The structure and optical properties were characterized by X-ray diffraction (XRD) and transmittance measurements. The films grown have a polycrystalline wurtzite structure and high transmission in the UV-Vis (300-900) nm. The optical energy gap of ZnO:Mg thin films could be controlled between (3.2eV and 3.9eV). The refractive index of ZnO:Mg thin films decreases with Mg doping. The extinction coefficient and the complex dielectric constant were also investigate.