Preferred Language
Articles
/
exiNKZUBVTCNdQwCCymM
Parallel Machine Learning Algorithms
...Show More Authors

 To expedite the learning process, a group of algorithms known as parallel machine learning algorithmscan be executed simultaneously on several computers or processors. As data grows in both size andcomplexity, and as businesses seek efficient ways to mine that data for insights, algorithms like thesewill become increasingly crucial. Data parallelism, model parallelism, and hybrid techniques are justsome of the methods described in this article for speeding up machine learning algorithms. We alsocover the benefits and threats associated with parallel machine learning, such as data splitting,communication, and scalability. We compare how well various methods perform on a variety ofmachine learning tasks and datasets, and we talk about the advantages and disadvantages of thesemethods. Finally, we offer our thoughts on where this field of study is headed and where furtherresearch is needed. The importance of parallel machine learning for businesses that want to gleaninsights from massive datasets is emphasised, and the paper provides a thorough introduction of thediscipline.

Scopus Crossref
View Publication
Publication Date
Sat Aug 10 2024
Journal Name
Cureus
Machine Learning and Vision: Advancing the Frontiers of Diabetic Cataract Management
...Show More Authors

View Publication
Crossref (1)
Clarivate Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
Detection of Suicidal Ideation on Twitter using Machine Learning & Ensemble Approaches
...Show More Authors

Suicidal ideation is one of the most severe mental health issues faced by people all over the world. There are various risk factors involved that can lead to suicide. The most common & critical risk factors among them are depression, anxiety, social isolation and hopelessness. Early detection of these risk factors can help in preventing or reducing the number of suicides. Online social networking platforms like Twitter, Redditt and Facebook are becoming a new way for the people to express themselves freely without worrying about social stigma. This paper presents a methodology and experimentation using social media as a tool to analyse the suicidal ideation in a better way, thus helping in preventing the chances of being the victim o

... Show More
View Publication Preview PDF
Scopus (42)
Crossref (30)
Scopus Clarivate Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Journal Of Engineering
An Empirical Investigation on Snort NIDS versus Supervised Machine Learning Classifiers
...Show More Authors

With the vast usage of network services, Security became an important issue for all network types. Various techniques emerged to grant network security; among them is Network Intrusion Detection System (NIDS). Many extant NIDSs actively work against various intrusions, but there are still a number of performance issues including high false alarm rates, and numerous undetected attacks. To keep up with these attacks, some of the academic researchers turned towards machine learning (ML) techniques to create software that automatically predict intrusive and abnormal traffic, another approach is to utilize ML algorithms in enhancing Traditional NIDSs which is a more feasible solution since they are widely spread. To upgrade t

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
AlexNet-Based Feature Extraction for Cassava Classification: A Machine Learning Approach
...Show More Authors

Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (5)
Scopus Crossref
Publication Date
Mon Apr 07 2025
Journal Name
Al-nahrain Journal For Engineering Sciences
Navigating the Challenges and Opportunities of Tiny Deep Learning and Tiny Machine Learning in Lung Cancer Identification
...Show More Authors

Lung cancer is the most common dangerous disease that, if treated late, can lead to death. It is more likely to be treated if successfully discovered at an early stage before it worsens. Distinguishing the size, shape, and location of lymphatic nodes can identify the spread of the disease around these nodes. Thus, identifying lung cancer at the early stage is remarkably helpful for doctors. Lung cancer can be diagnosed successfully by expert doctors; however, their limited experience may lead to misdiagnosis and cause medical issues in patients. In the line of computer-assisted systems, many methods and strategies can be used to predict the cancer malignancy level that plays a significant role to provide precise abnormality detectio

... Show More
View Publication
Scopus Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Baghdad Science Journal
Constructing a Software Tool for Detecting Face Mask-wearing by Machine Learning
...Show More Authors

       In the pandemic era of COVID19, software engineering and artificial intelligence tools played a major role in monitoring, managing, and predicting the spread of the virus. According to reports released by the World Health Organization, all attempts to prevent any form of infection are highly recommended among people. One side of avoiding infection is requiring people to wear face masks. The problem is that some people do not incline to wear a face mask, and guiding them manually by police is not easy especially in a large or public area to avoid this infection. The purpose of this paper is to construct a software tool called Face Mask Detection (FMD) to detect any face that does not wear a mask in a specific

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
8th Engineering And 2nd International Conference For College Of Engineering – University Of Baghdad: Coec8-2021 Proceedings
Sentiment analysis in arabic language using machine learning: Iraqi dialect case study
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Mon Oct 30 2023
Journal Name
Traitement Du Signal
A Comprehensive Review on Machine Learning Approaches for Enhancing Human Speech Recognition
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Thu Aug 31 2023
Journal Name
Journal Européen Des Systèmes Automatisés​
An IoT and Machine Learning-Based Predictive Maintenance System for Electrical Motors
...Show More Authors

The rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com

... Show More
View Publication
Scopus (33)
Crossref (24)
Scopus Crossref
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Geological Journal
Evaluating Machine Learning Techniques for Carbonate Formation Permeability Prediction Using Well Log Data
...Show More Authors

Machine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To

... Show More
View Publication
Scopus (14)
Crossref (6)
Scopus Crossref