Estimating an individual's age from a photograph of their face is critical in many applications, including intelligence and defense, border security and human-machine interaction, as well as soft biometric recognition. There has been recent progress in this discipline that focuses on the idea of deep learning. These solutions need the creation and training of deep neural networks for the sole purpose of resolving this issue. In addition, pre-trained deep neural networks are utilized in the research process for the purpose of facial recognition and fine-tuning for accurate outcomes. The purpose of this study was to offer a method for estimating human ages from the frontal view of the face in a manner that is as accurate as possible and takes into account the majority of the challenges faced by existing methods of age estimate. Making use of the data set that serves as the foundation for the face estimation system in this region (IMDB-WIKI). By performing preparatory processing activities to setup and train the data in order to collect cases, and by using the CNN deep learning method, which yielded results with an accuracy of 0.960 percent, we were able to reach our objective.
Often times, especially in practical applications, it is difficult to obtain data that is not tainted by a problem that may be related to the inconsistency of the variance of error or any other problem that impedes the use of the usual methods represented by the method of the ordinary least squares (OLS), To find the capabilities of the features of the multiple linear models, This is why many statisticians resort to the use of estimates by immune methods Especially with the presence of outliers, as well as the problem of error Variance instability, Two methods of horsepower were adopted, they are the robust weighted least square(RWLS)& the two-step robust weighted least square method(TSRWLS), and their performance was verifie
... Show MoreBackground: Cluster of differentiation 14 (CD14) is a serum/cell surface glycoprotein; and it is a pattern recognition receptor. CD14 expressed on the surface of various cells, or it found soluble in saliva and other body fluids. It has been proposed that soluble CD14 (sCD14) may play a protective role by controlling Gram negative bacterial infections through its capacity to bind lipopolysaccharide. This study was conducted to assess the level of soluble CD14 in saliva of patients with different periodontal diseases and healthy subjects and determine its correlation with clinical periodontal parameters. Materials & Methods: A total of 80 subjects, age ranged (25-50) years old, divided into three main groups, group ? consisted of 45 chronic
... Show MoreRESRAD is a computer model designed to estimate risks and radiation doses from residual radioactive materials in soil. Thirty seven soil samples were collected from the area around the berms of Al-Tuwaitha site and two samples as background taken from an area about 3 km north of the site. The samples were measured by gamma-ray spectrometry system using high purity germanium (HPGe) detector. The results of samples measurements showed that three contaminated area with 238U and 235U found in the study area. Two scenarios were applied for each contaminated area to estimate the dose using RESRAD (onsite) version 7.0 code. The total dose of resident farmer scenario for area A, B and C are 0.854, 0.033 and 2.15×10-3 mSv.yr-1, respectively. Whi
... Show MoreThe novel Vierordt’s approach, or simultaneous equation method, was created and validated for the concurrent determination of vincristine sulfate (VCS) and bovine serum albumin (BSA) in pure solutions utilizing UV spectrophotometry. It is simple, precise, economical, rapid, reliable, and accurate. This method depends on measuring absorbance at two wavelengths, 296 nm and 278 nm, which correspond to the λmax of VCS and BSA in deionized water, respectively. The calibration curves of VCS and BSA are linear at concentration ranges of 10–60 μg/mL and 200–1600 μg/mL, with correlation coefficient values (R2) of 1 and 0.999, respectively. The limits of detection (LOD) and quantification (LO
... Show MoreThe aim of the research is to identify the cognitive method (rigidity flexibility) of third-stage students in the collage of Physical Education and Sports Sciences at The University of Baghdad, as well as to recognize the impact of using the McCarthy model in learning some of skills in gymnastics, as well as to identify the best groups in learning skills, the experimental curriculum was used to design equal groups with pre test and post test and the research community was identified by third-stage students in academic year (2020-2021), the subject was randomly selected two divisions after which the measure of cognitive method was distributed to the sample, so the subject (32) students were distributed in four groups, and which the pre te
... Show MoreFunctionalized Multi-Walled Carbon Nanotubes (MWCNTs-OH) network with thickness 4μm was made by the vacuum filtration from suspension (FFS) method. The morphology, structure and optical properties of the MWCNTs film were characterized by SEM and UV-Vis. spectra techniques. The SEM images reflected highly ordered network in the form of ropes or bundles with close-packing which looks like spaghetti. The absorbance spectrum revealed that the network has a good absorbance in the UV-Vis. region. The gas sensor system was used to test the MWCNT-OH network to detect NH3gas at room temperature. The resistance of the sensor was increased when exposed to the NH3gas. The sensitivities of the network w
... Show MoreCurrent research aims to find out:
- Effect of using the active learning in the achievement of third grade intermediate students in mathematics.
- Effect of using of active learning in the tendency towards the study of mathematics for students of third grade intermediate.
In order to achieve the goals of the research, the researcher formulated the following two hypotheses null:
- There is no difference statistically significant at the level of significance (0.05) between two average of degrees to achievement
Amputation of the upper limb significantly hinders the ability of patients to perform activities of daily living. To address this challenge, this paper introduces a novel approach that combines non-invasive methods, specifically Electroencephalography (EEG) and Electromyography (EMG) signals, with advanced machine learning techniques to recognize upper limb movements. The objective is to improve the control and functionality of prosthetic upper limbs through effective pattern recognition. The proposed methodology involves the fusion of EMG and EEG signals, which are processed using time-frequency domain feature extraction techniques. This enables the classification of seven distinct hand and wrist movements. The experiments conducte
... Show More