Preferred Language
Articles
/
evo_upkBMF18lwyZiM1H
A New Method for Face-Based Recognition Using a Fuzzy Face Deep Model
...Show More Authors

Face recognition is a crucial biometric technology used in various security and identification applications. Ensuring accuracy and reliability in facial recognition systems requires robust feature extraction and secure processing methods. This study presents an accurate facial recognition model using a feature extraction approach within a cloud environment. First, the facial images undergo preprocessing, including grayscale conversion, histogram equalization, Viola-Jones face detection, and resizing. Then, features are extracted using a hybrid approach that combines Linear Discriminant Analysis (LDA) and Gray-Level Co-occurrence Matrix (GLCM). The extracted features are encrypted using the Data Encryption Standard (DES) for security and then sent to the cloud server hosting the deep model. Upon reaching the server, the features are decrypted and fed into the proposed Fuzzy Face Deep Model (FFDM), which incorporates a fuzzy layer to enhance recognition accuracy. The model was evaluated using the MUCT and LFW datasets, demonstrating high accuracy and notable results, with precision of 99.65% and 100% on MUCT and LFW, respectively.

Crossref
View Publication
Publication Date
Sat Dec 17 2022
Journal Name
Applied Sciences
A Hybrid Artificial Intelligence Model for Detecting Keratoconus
...Show More Authors

Machine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a

... Show More
View Publication
Scopus (1)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Cpwr
Development of a workforce sustainability model for construction
...Show More Authors

Publication Date
Mon Oct 07 2019
Journal Name
Construction Innovation
A hybrid conceptual model for BIM in FM
...Show More Authors
Purpose

The purpose of this paper is to develop a hybrid conceptual model for building information modelling (BIM) adoption in facilities management (FM) through the integration of the technology task fit (TTF) and the unified theory of acceptance and use of technology (UTAUT) theories. The study also aims to identify the influence factors of BIM adoption and usage in FM and identify gaps in the existing literature and to provide a holistic picture of recent research in technology acceptance and adoption in the construction industry and FM sector.

Design/methodology/approach
... Show More
View Publication
Scopus (32)
Crossref (26)
Scopus Clarivate Crossref
Publication Date
Thu Nov 03 2022
Journal Name
Sensors
A Novel Application of Deep Learning (Convolutional Neural Network) for Traumatic Spinal Cord Injury Classification Using Automatically Learned Features of EMG Signal
...Show More Authors

In this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesi

... Show More
View Publication
Scopus (9)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Tue Jun 04 2024
Journal Name
International Journal Of Operational Research
Pascal's triangle graded mean defuzzification approach for solving fuzzy assignment models by using pentagonal fuzzy numbers
...Show More Authors

The fuzzy assignment models (FAMs) have been explored by various literature to access classical values, which are more precise in our real-life accomplishment. The novelty of this paper contributed positively to a unique application of pentagonal fuzzy numbers for the evaluation of FAMs. The new method namely Pascal's triangle graded mean (PT-GM) has presented a new algorithm in accessing the critical path to solve the assignment problems (AP) based on the fuzzy objective function of minimising total cost. The results obtained have been compared to the existing methods such as, the centroid formula (CF) and centroid formula integration (CFI). It has been demonstrated that operational efficiency of this conducted method is exquisitely develo

... Show More
View Publication
Scopus Crossref
Publication Date
Mon Oct 04 2021
Journal Name
Journal Of Petroleum Exploration And Production Technology
Perforation location optimization through 1-D mechanical earth model for high-pressure deep formations
...Show More Authors

Optimum perforation location selection is an important study to improve well production and hence in the reservoir development process, especially for unconventional high-pressure formations such as the formations under study. Reservoir geomechanics is one of the key factors to find optimal perforation location. This study aims to detect optimum perforation location by investigating the changes in geomechanical properties and wellbore stress for high-pressure formations and studying the difference in different stress type behaviors between normal and abnormal formations. The calculations are achieved by building one-dimensional mechanical earth model using the data of four deep abnormal wells located in Southern Iraqi oil fields. The magni

... Show More
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Runge-kutta Numerical Method for Solving Nonlinear Influenza Model
...Show More Authors
Abstract<p>The main object of this study is to solve a system of nonlinear ordinary differential equations (ODE) of the first order governing the epidemic model using numerical methods. The application under study is a mathematical epidemic model which is the influenza model at Australia in 1919. Runge-kutta methods of order 4 and of order 45 for solving this initial value problem(IVP) problem have been used. Finally, the results obtained have been discussed tabularly and graphically.</p>
View Publication
Scopus (7)
Crossref (3)
Scopus Crossref
Publication Date
Mon Sep 01 2014
Journal Name
19th International Conference On Methods And Models In Automation And Robotics (mmar) 2014
A PSO-optimized type-2 fuzzy logic controller for navigation of multiple mobile robots
...Show More Authors

Scopus (22)
Crossref (20)
Scopus Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Advances In Computing
A New Abnormality Detection Approach for T1-Weighted Magnetic Resonance Imaging Brain Slices Using Three Planes
...Show More Authors

Generally, radiologists analyse the Magnetic Resonance Imaging (MRI) by visual inspection to detect and identify the presence of tumour or abnormal tissue in brain MR images. The huge number of such MR images makes this visual interpretation process, not only laborious and expensive but often erroneous. Furthermore, the human eye and brain sensitivity to elucidate such images gets reduced with the increase of number of cases, especially when only some slices contain information of the affected area. Therefore, an automated system for the analysis and classification of MR images is mandatory. In this paper, we propose a new method for abnormality detection from T1-Weighted MRI of human head scans using three planes, including axial plane, co

... Show More
Publication Date
Thu Sep 05 2013
Journal Name
Eng. & Tech. Journal
Snubber Network Design for Triac Driving Single – Phase Industrial Heater by Applying Fuzzy Logic Method
...Show More Authors

Power switches require snubbing networks for driving single – phase industrial heaters. Designing these networks, for controlling the maximum allowable rate of rise of anode current (di/dt) and excessive anode – cathode voltage rise (dv/dt) of power switching devices as thyristors and Triacs, is usually achieved using conventional methods like Time Constant Method (TCM), resonance Method (RM), and Runge-Kutta Method (RKM). In this paper an alternative design methodology using Fuzzy Logic Method (FLM) is proposed for designing the snubber network to control the voltage and current changes. Results of FLM, with fewer rules requirements, show the close similarity with those of conventional design methods in such a network of a Triac drivin

... Show More
View Publication Preview PDF