The construction of highly safe and durable buildings that can bear accident damage risks including fire, earthquake, impact, and more, can be considered to be the most important goal in civil engineering technology. An experimental investigation was prepared to study the influence of adding various percentages 0%, 1.0%, and 1.5% of micro steel fiber volume fraction (Vf) to reactive powder concrete (RPC)—whose properties are compressive strength, splitting tensile strength, flexural strength, and absorbed energy—after the exposure to fire flame of various burning temperatures 300, 400, and 500 °C using gradual-, foam-, and sudden-cooling methods. The outcomes of this research proved that the maximum reduction in mechanical properties is detected in case of 0% addition at burning temperature of 500 °C using sudden cooling to be 63.90%, 55.77% and 53.8% for compressive, splitting tensile, and flexural strength, respectively, while using 1.5% produced a modification in compressive strength, splitting tensile strength, and flexural strength to 6.67%, 4.15%, and 7.00% respectively, and 7.10 kN·mm for the absorbed energy for gradual cooling at 300 °C. From the results, the adopted cooling methods can be ordered according to their negative influence by sudden, foam, and gradual, while the optimum percentage of (Vf) is 1.5% when burning at 300 °C for all methods of cooling. 1.0% is considered the optimum percentage for all burning temperatures that exceed 400 °C using sudden-cooling method.
Gypseous soils are considered one of the most problematic soils. The skirted foundation is an alternative technology that works to improve the bearing capacity and reduce settlement. This paper investigates the use of square skirted foundations resting on gypseous soil subjected to concentric and eccentric vertical load with eccentricity values of 4, 8, and 17 mm in 16 experimental model tests. To obtain the results by using this type of foundation, a small-scale physical model was designed to obtain the load–settlement behavior of the square skirted foundation; the dimension of the square footing is 100 mm × 100 mm with 1 mm thickness, the skirt depth (
Wettability of CO2-brine-mineral systems plays a vital role during geological CO2-storage. Residual trapping is lower in deep saline aquifers where the CO2 is migrating through quartz rich reservoirs but CO2 accumulation within a three-way structural closure would have a high storage volume due to higher CO2 saturation in hydrophobic quartz rich reservoir rock. However, such wettability is only poorly understood at realistic subsurface conditions, which are anoxic or reducing. As a consequence of the reducing environment, the geological formations (i.e. deep saline aquifers) contain appreciable concentrations of various organic acids. We thus demonstrate here what impact traces of organic acids exposed to storage rock have on their wettabil
... Show MoreThe major aim of this research is study the effect of the type of lightweight aggregate (Porcelinite and Thermostone), type and ratio of the pozzolanic material(SF and HRM) and the use of different ratios of w/cm ratio(0.32 and 0.35) on the properties of SCLWC in the fresh and hardened state. SF and HRM are used in three percentage 5%,10%, and 15% as a partial replacement by weight of
cement for all types of SCLWC. The requirements of self-compatibility for SCC are fulfilled by using the high performance superplasticizer (G51) at 1.2liter per 100 kg of cement. The values of air dry density and compressive strength at age of 28 days within the limits of structural lightweight concrete. The air dry density and compressive strength at a
This study aimed at evaluating the torsional capacity of reinforced concrete (RC) beams externally wrapped with fiber reinforced polymer (FRP) materials. An analytical model was described and used as a new computational procedure based on the softened truss model (STM) to predict the torsional behavior of RC beams strengthened with FRP. The proposed analytical model was validated with the existing experimental data for rectangular sections strengthened with FRP materials and considering torque-twist relationship and crack pattern at failure. The confined concrete behavior, in the case of FRP wrapping, was considered in the constitutive laws of concrete in the model. Then, an efficient algorithm was developed in MATLAB environment t
... Show MoreThe current research aimed to identify the level of moral identity and social affiliation among students exposed to shock pressures, as well as to reveal the relationship between these variables. To achieve these objectives, the researcher adopted the diagnostic tool for the measure of post-traumatic stress disorder (PDS-5) scale (Foa, 2013) translated to Arabic language by (Imran, 2017). The researcher also adopted the moral identity scale built by (Al-Bayati, 2015) and the measure of social affiliation built by (Al-Jashami, 2013), which were applied to a random sample of (200) male and female students chose from al Anbar University. They were exposed to shock pressures. The results of the research showed that the sample has an average
... Show MoreTest results of eight reinforced concrete one way slab with lacing reinforcement are reported. The tests were designed to study the effect of the lacing reinforcement on the flexural behavior of one way slabs. The test parameters were the lacing steel ratio, flexural steel ratio and span to the effective depth ratio. One specimen had no lacing reinforcement and the remaining seven had various percentages of lacing and flexural steel ratios. All specimens were cast with normal density concrete of approximately 30 MPa compressive strength. The specimens were tested under two equal line loads applied statically at a thirds part (four point bending test) up to failure. Three percentage of lacing and flexural steel ratios wer
... Show MoreIn this study the simple pullout concrete cylinder specimen reinforced by a single steel bar was analyzed for bond-slip behavior. Three-dimension nonlinear finite element model using ANSYS program was employed to study the behavior of bond between concrete and plain steel reinforcement. The ANSYS model includes eight-noded isoperimetric brick element (SOLID65) to model the concrete cylinder while the steel reinforcing bar was modeled as a truss member (LINK8). Interface element (CONTAC52) was used in this analysis to model the bond between concrete and steel bar. Material nonlinearity due to cracking and/or crushing of concrete, and yielding of the steel reinforcing bar were taken into consideration during the analysis. The accuracy of t
... Show MoreThe present study experimentally and numerically investigated the impact behavior of composite reinforced concrete (RC) beams with the pultruded I-GFRP and I-steel beams. Eight specimens of two groups were cast in different configurations. The first group consisted of four specimens and was tested under static load to provide reference results for the second group. The four specimens in the second group were tested first under impact loading and then static loading to determine the residual static strengths of the impacted specimens. The test variables considered the type of encased I-section (steel and GFRP), presence of shear connectors, and drop height during impact tests. A mass of 42.5 kg was dropped on the top surface at the m
... Show More