The researchers have discovered weaknesses in the rotational phase of the 100-meter freestyle event, including a lack of proper movement direction and control of biomechanical variables necessary for swimmers to achieve high rotational accuracy, which leads to outperforming competitors. The objective of this study was to investigate the effect of using a laser device on improving the performance of the rotational phase among swimmers on the Iraqi national team. The experimental approach was conducted on a sample of 6 swimmers, representing 100% of the target population. The researchers concluded that the utilization of a proposed laser device in the rotational phase resulted in positive differences in biomechanical variables, contributing to the enhancement of swimmers' performance and increasing the horizontal distance achieved. Consequently, the researchers recommend the implementation of a laser device during the rotational phase to detect weaknesses and enhance strengths, thereby facilitating coaches in the development of swimmers.
Free water surface constructed wetlands (FSCWs) can be used to complement conventional waste water treatment but removal efficiencies are often limited by a high ratio of water volume to biofilm surface area (i.e. high water depth). Floating treatment wetlands (FTWs) consist of floating matrices which can enhance the surface area available for the development of fixed microbial biofilms and provide a platform for plant growth (which can remove pollutants by uptake). In this study the potential of FTWs for ammoniacal nitrogen (AN) removal was evaluated using experimental mesocosms operated under steady-state flow conditions with ten different treatments (two water depths, two levels of FTW mat coverage, two different plant densities and
... Show MoreGlobal technological advancements drive daily energy consumption, generating additional carbon-induced climate challenges. Modifying process parameters, optimizing design, and employing high-performance working fluids are among the techniques offered by researchers for improving the thermal efficiency of heating and cooling systems. This study investigates the heat transfer enhancement of hybrid “Al2O3-Cu/water” nanofluids flowing in a two-dimensional channel with semicircle ribs. The novelty of this research is in employing semicircle ribs combined with hybrid nanofluids in turbulent flow regimes. A computer modeling approach using a finite volume approach with k-ω shear stress transport turbulence model was used in these simu
... Show MoreThis paper aims at providing the teaching staff members with the necessary skills so as to become capable of tackling various situations, and treating daily problems that face students learning Spanish as a Second Language. This is made as an attempt to make teachers of foreign languages in general acquainted with modern trends of teaching with less complicated methods, specifically in teaching e earlier stages of foreign languages.
Abstracto:
En el presente trabajo pretendemos dotar al docente no nativo de Lenguas extranjeras, con algunos de los métodos necesari
... Show MoreThe study involved preparing a new compound by combining between 2-hydroxybenzaldehyde and (Z)-3-hydrazineylideneindolin-2-one resulting in Schiff bases and metal ions: Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) forming stable minerals-based-Schiff complexes. The formation of resulting Schiff bases is detected spectrally using LC-Mss which gave corresponding results with theoretical results, 1H-NMR proves the founding of N=CH signal, FT-IR indicates the occurrence of imine band and UV-VIs mean is proved the ligand formation. On the other hand, minerals-based-Schiff was characterized using the same spectral means that relied with ligand (Schiff bases). Those means gave satisfactory results and proved the suggested distinguishable geometries.
... Show MoreThe ligand 2-[1-(1H-indol-3-yl)ethylimino) methyl]naphthalene-1-ol, derived from 1-hydroxy-2-naphthaldehyde and 2-(1H-indol-3-yl)ethylamine, was used to produce a new sequence of metal ions complexes. Thus ligand reactions with NiCl2.6H2O, PdCl2, FeCl3.6H2O and H2PtCl6.6H2O were sequentially made to collect mono-nuclear Ni(II), Pd(II), Fe (III), and Pt(IV). (IR or FTIR), Ultraviolet Reflective (UV–visible), Mass Spectra analysis, Bohr-magnetic (B.M.), metal content, chloride content and molar conductivity have been the defining features of the composites. The Fe(III) and Pt(IV) complexes have octahedral geometries, while the Ni(II) complex has tetra
... Show MoreTraumatic radial nerve injury in humeral shaft fracture is the most common traumatic nerve injury in long-bone fracture, with overall prevalence 2-18%, ranging from traction to complete transection. Spontaneous recovery may reach 88%. The aim of the study is to assess the sensitivity & specificity of the ultrasound to detect the radial nerve injury and to see if this can be used as a diagnostic test. This is a prospective study on 17 adult patients with a closed fracture of the humeral shaft, dividing into two groups, the first group of 7 patients had signs and symptoms of radial nerve palsy at presentation and the second group of 10 patients had intact radial nerve function was considered as a control group. All these patients had at leas
... Show MoreThe preparation and characterization of innovative nanocomposites based on zinc oxide nanorods (ZNR) encapsulated by graphene (Gr) nanosheets and decorated with silver (Ag), and cupper (Cu) nanoparticles (NP) were studied. The prepared nanocomposites (ZNR@Gr/Cu-Ag) were examined by different techniques including Field Emission Scanning Electron Microscope (FESEM), Transmission electron microscopy (TEM), Atomic force microscopy (AFM), UV-Vis spectrophotometer and fluorescence spectroscopy. The results showed that the ZNR has been good cover by five layers of graphene and decorated with Ag and Cu NPs with particles size of about 10-15 nm. The ZNR@Gr/Cu-Ag nanocomposites exhibit high absorption behavior in ultraviolet (UV) region of sp
... Show More