This study investigated the shear performance of concrete beams with GFRP stirrups vs. traditional steel stirrups. Longitudinal glass fiber‐reinforced polymer (GFRP) bars were used to doubly reinforce the tested beams at both the top and bottom of their cross sections. To accomplish this, several stirrup spacings were provided. Eight beam specimens, measuring 300 × 250 × 2400 mm, were used in an experimental program to test under a two‐point concentrated load with an equal span‐to‐depth ratio until failure. Four beams in Group I have standard mild steel stirrups of 8 mm diameter, while four beams in Group II have GFRP stirrups with the same adopted diameter. The difference between the beams in each group was mainly due to the spacing between the reinforcing stirrups in the constant shear and pure bending spans. The test matrix consists of two beams with shear reinforcement equally distributed at 100 mm and 200 mm in constant shear and pure bending spans, respectively. Stirrups were placed uniformly over the whole effective span of the other six beams. In two beams, stirrups were placed 100 mm apart; in the other two, 75 mm; and in the last two, 50 mm. Test outcomes showed that GFRP stirrups, as opposed to steel stirrups, decreased the ultimate load by around 8%–27% based on stirrup spacing, while reducing the stirrup spacing increased the shear capacity. Also, the presence of compression GFRP bars and GFRP stirrups in the pure bending span led to an increase in the flexural stiffness of the tested beams. Consequently, this increase contributed to a higher ductility index. Accordingly, it is essential to prioritize adequate shear strength above flexural strength when designing GFRP‐reinforced concrete beams, as evidenced by the continuous observation of flexure‐shear cracking as the primary mode of failure in almost all tested beams.
Al2O3 and Al2O3–Al composite coatings were deposited on steel specimens using Oxy-acetylene gas thermal spray gun. Alumina was mixed with Aluminum in six groups of concentrations (0, 5, 10,12,15 and 20% ) Al2O3, Specimens were tested for corrosion using Potentiodynamic polarization technique. Further tests were conducted for the effect of temperature on polarization curve and the hardness tests for the coated specimens. At first, Modelling was carried out using MINITAB-19, least square method, as a 2nd degree nonlinear model, bad results were achieved because of the high nonlinearity. Better result w
This study proposed using color components as artificial intelligence (AI) input to predict milk moisture and fat contents. In this sense, an adaptive neuro‐fuzzy inference system (ANFIS) was applied to milk processed by moderate electrical field‐based non‐thermal (NP) and conventional pasteurization (CP). The differences between predicted and experimental data were not significant (
To evaluate the shear bond strength and interfacial morphology of sound and caries-affected dentin (CAD) bonded to two resin-modified glass ionomer cements (RMGICs) after 24 hours and two months of storage in simulated body fluid at 37°C.
Sixty-four permanent human mandibular first molars (32 sound and 32 with occlusal caries, following the International Caries Detection and Assessment System) were selected. Each prepared substrate (sound and CAD) was co
Bacteriocin is an important antimicrobial peptide that can be used in industrial and medical fields due to its characteristics of antibacterial, food preservation and anticancer activities. Fifty isolates of Bacillus sp were collected from different soil samples which were already recognized via morphological and biochemical identification process. The isolates were screened for bacteriocin production effective against Staphylococcus spp in order to select the highest producing isolate. The isolate NK16 showed the maximum bacteriocin production (80 AU/ml) which was further characterized as Bacillus subtilis NK 16 through using API identification system (API 20E and API 50CHB). Then, next step was to detect the optimal conditions for maximum
... Show More1-[4-(4-Acetyl-2-hydroxy-phenylazo)-phenyl]-ethanone (L1) and 1-[3-Hydroxy-4(4-nitro-phenylazo)-phenyl]-ethanone (L2) were readied by combination the diazonium salts of amines with 3-hydroxyacetophenone. (C.H.N) analyses, infrared spectra, UV–vis electronic absorption spectra, 1H and 13CNMR spectral mechanisms are use to identified of the ligands. Complexes of Ni+2 and Cu+2 were performed as well depicted. The formation of complexes has been identified by using atomic absorption of flame, elemental analysis, infrared spectra and UV-Vis spectral process as well conductivity and magnetic quantifications. Nature of compounds produced have been studied obeyed the mole ratio and continuous contrast methods, Beer's law followed during a concent
... Show MoreMixed ligand metal complexes of CrIII, FeIII,II, NiII and CuII have been synthesized using 5-chlorosalicylic acid (5-CSA) as a primary ligand and L-Valine (L-Val) as secondary ligand. The metal complexes have been characterized by elemental analysis, electrical conductance, magnetic susceptibility measurements and spectral studies. The electrical conductance studies of the complexes indicate their electrolytic nature. Magnetic susceptibility measurements revealed paramagnetic nature of the all complexes. Bonding
In this study, biodiesel was prepared from chicken fat via a transesterification reaction using Mussel shells as a catalyst. Pretreatment of chicken fat was carried out using non‐catalytic esterification to reduce the free fatty acid content from 36.28 to 0.96 mg KOH/g oil using an ethanol/ fat mole ratio equal to 115:1. In the transesterification reaction, the studied variables were methanol: oil mole ratio in the range of (6:1 ‐ 30:1), catalyst loading in the range of (9‐15) wt%, reaction temperature (55‐75 °C), and reaction time (1‐7) h. The heterogeneous alkaline catalyst was greenly synthesized from waste mussel shells throughout a calcin
Experimental measurements were done for characterizing current-voltage and power-voltage of two types of photovoltaic (PV) solar modules; monocrystalline silicon (mc-Si) and copper indium gallium di-selenide (CIGS). The conversion efficiency depends on many factors, such as irradiation and temperature. The assembling measures as a rule cause contrast in electrical boundaries, even in cells of a similar kind. Additionally, if the misfortunes because of cell associations in a module are considered, it is hard to track down two indistinguishable photovoltaic modules. This way, just the I-V, and P-V bends' trial estimation permit knowing the electrical boundaries of a photovoltaic gadget with accuracy. This measure
... Show MoreA specific, sensitive and new simple method was used for the determination of methyldopa in pure and pharmaceutical formulations by using continuous flow injection analysis. This method is based on formation of ion pair compound between methyldopa and potassium hexacyanoferrate in acidic medium to obtain a yellow precipitate complex using long distance chasing photometer (NAG-ADF-300-2). The linear range for calibration graph was 0.05-35 mmol/L for cell A and 0.05-25 mmol/L for cell B, and LOD 1.4292 µg /200 µL for both cells with correlation coefficient (r) 0.9981 for cell A and 0.9994 for cell B, RSD% was lower than 0.5 % for n=8 for. The results were compared with classical method UV-Spectrophotometric at λ max=280 nm and turbi
... Show More