Among the undesirable effects of soil compaction is a measurable reduction in plant growth and crop yield. The prevailing belief is that compacted tillage pans are caused by repetitive farming practices, heavy tractors, tillage tools, and field traffic. This experiment was conducted to determine and map the hardpan layers across an agricultural field through advanced technologies of precision agriculture. These valuable techniques such as data logger, yield map, and data analysis of performance indicators were linked with accurate global positioning systems (GPS) datasets. These important technologies provided the farmers and helped them to identify and manage areas of the fields with higher compacted layers. Three ground speeds 4.3, 5.2, and 6.4 km h-1 were performed with two tillage depths 25 and 40 cm of a chisel plow. The effects of these two factors were studied to determine slippage percentage, field productivity, traction power, and fuel consumption. For the first shallow 25 cm depth, the results showed that increasing the speed from 4.3 to 5.2 and then to 6.4 km h-1 led to a significant increase in slippage percentage from 7.22 to 10.35 and then to 12.63%, respectively. Increasing the speed increases field productivity from 0.547 to 0.663 then to 0. 749 ha hour-1, and tractive power increases from 9.44 to 11.74, then to 13.24 hp. As a result, there was a significant increase in the fuel consumption rate from 18.44 to 20.15, then to 22.27 L hour-1, respectively. Changing the depth from 25 to 40 cm and increasing the practical speed from 4.3 to 5.2 and then to 6.4 km h-1 led to a significant increase in slippage percentage from 10.14 to 12.77 and then to 15.27%, and a significant increase in field productivity from 0.446 to 0.568 and then to 0.640 ha hour-1, respectively. This led to a significant increase in traction power from 12.72 to 13.36, then to 15.87 hp. Increasing the speed also brought a significant increase in fuel rate from 22.14 to 23.54 and then to 26.14 L ha-1, respectively. Based on this study, it was concluded that the use of this powerful approach was a useful methodology to reflect, determine, specify, and manage the regions of induced and hardpan zones by means of dataset analyses provided by the GPS for the desired field.
The research deals with a modern concept in its applications and the studies it deals with, as the concept of urban densification is one of the most recent sustainable development strategies for cities.
Studies looking at the relationship between condensation and viability show mixed results. This study sheds light on how the built environment of dense urban areas affects the perceived quality of life of the population. How to enhance acceptance of dense life is an important question to investigate.
Adopting the concept of urban densification in city planning policies to be more sustainable and livable is of great importance by achieving efficient use of urban land and limiting urban sprawl, as well as reducing the
... Show MoreThe paper deals with claims in construction projects in Iraq and studies their types, causes, impacts, resolution methods and then proposes a management system to control the impacts of claims. Two parts have been done to achieve the research objective (theoretical part and practical part). The findings showed that the main types of the claims are extra work claims, different site condition claims, delay claims and the main causes of the claims are variation of the orders, design errors and omission, delay in payments by owner, variation in quantities and scheduling errors. The claims have bad impacts on the cost by increasing (10% to 25%) and also on the duration of the project by increasing from (25% to 50%).The negotiation is the main
... Show MoreConstruction projects have become a changing dramatically in recent decades and that the goal of the beneficiaries of the implementation of structural project is to complete the work with less time and within the cost of the specific and the best possible quality may sometimes happen that highlights the importance of time on the rest of the items at the implementation of projects for various reasons, including the need to use the project as soon as possible possible change rapidly to customer's requests, but the high cost of the project represents the biggest obstacle for entrepreneurs with its effects on the quality and the time workers, and is a measure of those elements in monetary terms is the key to integration between them, so the
... Show MoreEngineering equipment is essential part in the construction project and usually manufactured with long lead times, large costs and special engineering requirements. Construction manager targets that equipment to be delivered in the site need date with the right quantity, appropriate cost and required quality, and this entails an efficient supplier can satisfy these targets. Selection of engineering equipment supplier is a crucial managerial process .it requires evaluation of multiple suppliers according to multiple criteria. This process is usually performed manually and based on just limited evaluation criteria, so better alternatives may be neglected. Three stages of survey comprised number of public a
... Show MoreThis work was conducted to study the oxidation of phenol in aqueous solution using copper based catalyst with zinc as promoter and different carrier, i.e. γ-Alumina and silica. These catalysts were prepared by impregnation method.
The effect of catalyst composition, pH (5.6-9), phenol to catalyst concentration ratio (2-0.5), air feed rate (30-50) ml/s, stirring speed (400-800) rpm, and temperature (80-100) °C were examined in order to find the best conditions for phenol conversion.
The best operating conditions which lead to maximum phenol conversion (73.1%) are : 7.5 pH, 4/6 phenol to catalyst concentration, 40 ml/s air feed rate, 600 rpm stirring speed, and 100 °C reaction temperature. The reaction involved an induction period
The Makhoul Dam project proposed to be established is considered one of the strategic projects in Iraq as it works to insurance large quantity of water spare in flood seasons, increase the storage capacity of the dams in Iraq, as well as increase food security. The Makhool Dam is located on Tigris River in Salah al-Din Governorate, and 8 km south of the meeting point of the Tigris River with the Lower Zab River. The lake area is about 256 km2. In this research, a mathematical model was prepared by using HEC-RAS Two Dimension Software to analyze the velocity patterns and water depths inside makhool dam reservoir at the highest operational water elevation, based on the designs prepared
The accumulation of toxic elements in vegetables and melons grown in agriculture, Brassica rapa - turnip, Solanum lycopersicum - tomato, Citrullus lanatus - watermelon, Capsicum annuum - bell pepper, Daucus carota - carrots, Cucurbita pepo - pumpkin, Cucumis melo - melon, and also Prunus armeniaca - apricot from fruit trees were analyzed. The excess of maximum allowable concentrations in agricultural crops of the element As by 1.65-1.75, Cd - 1.6-2.3, Cr -1.2-2.35, Cu -1.6-3.3, Ni - 1.16-3.53, Pb - 1.54-3.08, Al - 1.36-3.5, Sb - 2.0-33, Se - 1.1-3.3 times was established. The maximum allowable concentration of mercury in vegetables and melons was equal to 0.02 mg/kg,
... Show MoreIn this study, phosphorescence analysis (KPA) is used for determining soil collected from the Tigris River from Al- Karrada and Bab Al-Sharq in Baghdad and samples were taken from rainwater collected from Al-Rashad, Al-Obeidi, Al-Dora and Al-Sadr City in Baghdad. The measurements were carried out by the Iraqi Ministry of Health and Environment, in the Radiation Protection Center. The collection, removal and evaporation of the samples ranged from January to the end of March 2018. The results show the presents of concentration of 238U and 235U in soil samples and the rainwater samples. The conclusion of this work is the concentration of uranium in soil samples is more than recommendations by ICRP value of 1.9 μg /l. While all water sample
... Show MoreThe current study involves placing 135 boreholes drilled to a depth of 10 m below the existing ground level. Three standard penetration tests (SPT) are performed at depths of 1.5, 6, and 9.5 m for each borehole. To produce thematic maps with coordinates and depths for the bearing capacity variation of the soil, a numerical analysis was conducted using MATLAB software. Despite several-order interpolation polynomials being used to estimate the bearing capacity of soil, the first-order polynomial was the best among the other trials due to its simplicity and fast calculations. Additionally, the root mean squared error (RMSE) was almost the same for the all of the tried models. The results of the study can be summarized by the production
... Show More