In this paper, a fusion of K models of full-rank weighted nonnegative tensor factor two-dimensional deconvolution (K-wNTF2D) is proposed to separate the acoustic sources that have been mixed in an underdetermined reverberant environment. The model is adapted in an unsupervised manner under the hybrid framework of the generalized expectation maximization and multiplicative update algorithms. The derivation of the algorithm and the development of proposed full-rank K-wNTF2D will be shown. The algorithm also encodes a set of variable sparsity parameters derived from Gibbs distribution into the K-wNTF2D model. This optimizes each sub-model in K-wNTF2D with the required sparsity to model the time-varying variances of the sources in the spectrogram. In addition, an initialization method is proposed to initialize the parameters in the K-wNTF2D. Experimental results on the underdetermined reverberant mixing environment have shown that the proposed algorithm is effective at separating the mixture with an average signal-to-distortion ratio of 3 dB.
Due to the difficulties that Iraqi students face when writing in the English language, this preliminary study aimed to improve students' writing skills by using online platforms remotely. Sixty first-year students from Al-Furat Al–Awsat Technical University participated in this study. Through these platforms, the researchers relied on stimuli, such as images, icons, and short titles to allow for deeper and more accurate participations. Data were collected through corrections, observations, and feedback from the researchers and peers. In addition, two pre and post-tests were conducted. The quantitative data were analysed by SPSS statistical Editor, whereas the qualitative data were analyzed using the Piot table, an Excel sheet. The resu
... Show MoreSteganography is a mean of hiding information within a more obvious form of
communication. It exploits the use of host data to hide a piece of information in such a way
that it is imperceptible to human observer. The major goals of effective Steganography are
High Embedding Capacity, Imperceptibility and Robustness. This paper introduces a scheme
for hiding secret images that could be as much as 25% of the host image data. The proposed
algorithm uses orthogonal discrete cosine transform for host image. A scaling factor (a) in
frequency domain controls the quality of the stego images. Experimented results of secret
image recovery after applying JPEG coding to the stego-images are included.
A LiF (TLD-700) PTFED disc has adiameter of (13mm) and thickness of (0.4mm) for study the response and sensetivity of this material for gamma and beta rays by using (TOLEDO) system from pitman company. In order to calibrate the system and studying the calibration factor. Discs were irradiated for Gamma and Beta rays and comparing with the theoretical doses. The exposure range is between 15×10-2 mGy to 1000×10-2 mGy. These doses are within the range of normal radiation field for workers.
This paper introduces a relation between resultant and the Jacobian determinant
by generalizing Sakkalis theorem from two polynomials in two variables to the case of (n) polynomials in (n) variables. This leads us to study the results of the type: , and use this relation to attack the Jacobian problem. The last section shows our contribution to proving the conjecture.
This paper adapted the neural network for the estimating of the direction of arrival (DOA). It uses an unsupervised adaptive neural network with GHA algorithm to extract the principal components that in turn, are used by Capon method to estimate the DOA, where by the PCA neural network we take signal subspace only and use it in Capon (i.e. we will ignore the noise subspace, and take the signal subspace only).