The drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the modeling part, a one-dimension mechanical earth model (1D MEM) parameters, drilling fluid properties, and rig- and bit-related parameters, were included as inputs. The optimizing process was then performed to propose the optimum drilling parameters to select the drilling bit that provides the maximum possible ROP. To achieve this, the corresponding mathematical function of the ANNs model was implemented in a procedure using the genetic algorithm (GA) to obtain operating parameters that lead to maximum ROP. The output will propose an optimal bit selection that provides the maximum ROP along with the best drilling parameters. The statistical analysis of the predicted bit types and optimum drilling parameters comparing the actual flied measured values showed a low root mean square error (RMSE), low average absolute percentage error (AAPE), and high correction coefficient (R2). The proposed methodology provides drilling engineers with more choices to determine the best-case scenario for planning and/or drilling future wells. Meanwhile, the newly developed model can be used in optimizing the drilling parameters, maximizing ROP, estimating the drilling time, and eventually reducing the total field development expenses.
Background: Assessment is an important part of the learning cascade in education. Students realize it as an influential motivator to direct and guide their learning. The method of assessment determines the way the students reach high levels of learning. It has been documented that one of factor affecting students’ choice of learning approach is the way how assessment is being performed. Many methods of assessment namely multiple choice questions, essay questions and others are mainly used to assess basic science knowledge in undergraduate education. Objectives: The aim of this study is to compare multiple choice questions (MCQ) and essay questions (EQ) (record the success and failure rate of multiple choice questions (MCQ) and essay quest
... Show MoreElectrochemical machining is one of the widely used non-conventional machining processes to machine complex and difficult shapes for electrically conducting materials, such as super alloys, Ti-alloys, alloy steel, tool steel and stainless steel. Use of optimal ECM process conditions can significantly reduce the ECM operating, tooling, and maintenance cost and can produce components with higher accuracy. This paper studies the effect of process parameters on surface roughness (Ra) and material removal rate (MRR), and the optimization of process conditions in ECM. Experiments were conducted based on Taguchi’s L9 orthogonal array (OA) with three process parameters viz. current, electrolyte concentration, and inter-electrode gap. Sig
... Show MoreThe temperature influence on the fluorescence lifetime, quantum yields and non-radiative rate parameter or coumarin 460 dye dissolved in methanol was investigated in the temperature range (160-300 k). A single photon counting technique was used or measuring the fluorescence decay curves. A noticeable decrease of the fluorescence lifetime with increasing the temperature was observed. The non-radiative activation energy of 10.57 K.J. mole-1 was measured by the help of Arrhenius plot.
The current study was carried out at the Fields belongs of Horticulture Department, Collage of Agricultural Engineering Science, University of Baghdad, Al-Jadiriyah for the spring season 2016 -2017 to study the effect for inoculation mycorrhizae and folair application with bio stimulators and their interaction in the growth characters of (local okra ptera). A factorial experiment (2 in randomized complete block design (RCBD), the experiment included (12) treatment Distributed in three replicates. The three factors used in this experiment included . The inoculation with control (C) Mycorrhizae ( M ) , Biozyme (B ) ( B1 2cm3.L-1), ( B2 4cm1-.L-1) , Phosphalas (P) (P 2cm3.L-1), ( M + B1), ( M + B2), (P +
... Show MoreFoliar application and seed soaking has been used as a means of supplying supplemental doses of nutrients, plant hormones, stimulants, and organic components. the effects of these applications have included yield increases, and improved drought tolerance, and enhanced crop quality, so A field experiment was carried out during spring seasons in 2019 and 2020 for styding Seed soaking and Foliar Application of Ascorbic acid, Citric acid and Humic acid on Growth, Yield and Active Components IN Maize. Randomized complete block design in split plots arrangement was used with three replicates. Main-plots were for seeds soaking with ascorbic, citric (100 mg l-1) frequently and humic at (1 ml l-1). Sub-plots were for vegetative parts nutrition with
... Show More
The research aims to study and analysis of concurrent engineering (CE) and cost optimization (CO), and the use of concurrent engineering inputs to outputs to improve the cost, and the statement of the role of concurrent engineering in improving the quality of the product, and achieve savings in the design and manufacturing time and assembly and reduce costs, as well as employing some models to determine how much the savings in time, including the model (Lexmark) model (Pert) to determine the savings in design time for manufacturing and assembly time.
To achieve the search objectives, the General Company for Electrical and Electronic Industries \ Refrigerated Engine
... Show MoreAbstract
This study investigated the optimization of wear behavior of AISI 4340 steel based on the Taguchi method under various testing conditions. In this paper, a neural network and the Taguchi design method have been implemented for minimizing the wear rate in 4340 steel. A back-propagation neural network (BPNN) was developed to predict the wear rate. In the development of a predictive model, wear parameters like sliding speed, applying load and sliding distance were considered as the input model variables of the AISI 4340 steel. An analysis of variance (ANOVA) was used to determine the significant parameter affecting the wear rate. Finally, the Taguchi approach was applied to determine
... Show MoreThe maximization of the net present value of the investment in oil field improvements is greatly aided by the optimization of well location, which plays a significant role in the production of oil. However, using of optimization methods in well placement developments is exceedingly difficult since the well placement optimization scenario involves a large number of choice variables, objective functions, and restrictions. In addition, a wide variety of computational approaches, both traditional and unconventional, have been applied in order to maximize the efficiency of well installation operations. This research demonstrates how optimization approaches used in well placement have progressed since the last time they were examined. Fol
... Show MoreSmart cities have recently undergone a fundamental evolution that has greatly increased their potentials. In reality, recent advances in the Internet of Things (IoT) have created new opportunities by solving a number of critical issues that are allowing innovations for smart cities as well as the creation and computerization of cutting-edge services and applications for the many city partners. In order to further the development of smart cities toward compelling sharing and connection, this study will explore the information innovation in smart cities in light of the Internet of Things (IoT) and cloud computing (CC). IoT data is first collected in the context of smart cities. The data that is gathered is uniform. The Internet of Things,
... Show More