Preferred Language
Articles
/
eRaTGIcBVTCNdQwCZzZc
Drill Bit Selection Optimization Based on Rate of Penetration: Application of Artificial Neural Networks and Genetic Algorithms
...Show More Authors
Abstract<p>The drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the modeling part, a one-dimension mechanical earth model (1D MEM) parameters, drilling fluid properties, and rig- and bit-related parameters, were included as inputs. The optimizing process was then performed to propose the optimum drilling parameters to select the drilling bit that provides the maximum possible ROP. To achieve this, the corresponding mathematical function of the ANNs model was implemented in a procedure using the genetic algorithm (GA) to obtain operating parameters that lead to maximum ROP. The output will propose an optimal bit selection that provides the maximum ROP along with the best drilling parameters. The statistical analysis of the predicted bit types and optimum drilling parameters comparing the actual flied measured values showed a low root mean square error (RMSE), low average absolute percentage error (AAPE), and high correction coefficient (R2). The proposed methodology provides drilling engineers with more choices to determine the best-case scenario for planning and/or drilling future wells. Meanwhile, the newly developed model can be used in optimizing the drilling parameters, maximizing ROP, estimating the drilling time, and eventually reducing the total field development expenses.</p>
Crossref
View Publication
Publication Date
Mon Dec 10 2007
Journal Name
Iraqi Journal Of Laser
The Effect of He:Ne Laser on Viability and Growth Rate of Leishmania Major
...Show More Authors

An isolate of Leishmania major was grown on the semisolid medium and incubated at 26ºC. The isolate was irradiated by He: Ne laser (632.8 nm, 10 mW) at exposure times (5, 10, 15, 20, 25, 30) minutes in their respective order. The unirradiated groups represent control group. Growth rate and percentage of viability were examined during six days after irradiation. The change in these two parameters reflects the effect of irradiation on the parasite. The results refers that the general growth effected by irradiation in comparison with un irradiation group, The growth rate of parasite decrease with increasing the exposure time in comparison with control group. Parasite viability decrease with irradiation and the percentage of living cell dec

... Show More
View Publication Preview PDF
Publication Date
Sat Jul 01 2023
Journal Name
Journal Of Engineering
Material Selection for Unmanned Aerial Vehicles (UAVs) Wings Using Ashby Indices Integrated with Grey Relation Analysis Approach Based on Weighted Entropy for Ranking
...Show More Authors

The designer must find the optimum match between the object's technical and economic needs and the performance and production requirements of the various material options when choosing material for an engineering application. This study proposes an integrated (hybrid) strategy for selecting the optimal material for an engineering design depending on design requirements. The primary objective is to determine the best candidate material for the drone wings based on Ashby's performance indices and then rank the result using a grey relational technique with the entropy weight method. Aluminum alloys, titanium alloys, composites, and wood have been suggested as suitable materials for manufacturing drone wings. The requirement

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sat Jun 01 2024
Journal Name
Iaes International Journal Of Artificial Intelligence (ij-ai)
A novel fusion-based approach for the classification of packets in wireless body area networks
...Show More Authors

This abstract focuses on the significance of wireless body area networks (WBANs) as a cutting-edge and self-governing technology, which has garnered substantial attention from researchers. The central challenge faced by WBANs revolves around upholding quality of service (QoS) within rapidly evolving sectors like healthcare. The intricate task of managing diverse traffic types with limited resources further compounds this challenge. Particularly in medical WBANs, the prioritization of vital data is crucial to ensure prompt delivery of critical information. Given the stringent requirements of these systems, any data loss or delays are untenable, necessitating the implementation of intelligent algorithms. These algorithms play a pivota

... Show More
View Publication
Scopus Crossref
Publication Date
Mon Jul 01 2019
Journal Name
Materials Research Express
SiC composite based selective electromagnetic propagation for GHz application
...Show More Authors

View Publication
Scopus (6)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Sat Mar 01 2025
Journal Name
Al-khwarizmi Engineering Journal
Deep-Learning-Based Mobile Application for Detecting COVID-19
...Show More Authors

Patients infected with the COVID-19 virus develop severe pneumonia, which typically results in death. Radiological data show that the disease involves interstitial lung involvement, lung opacities, bilateral ground-glass opacities, and patchy opacities. This study aimed to improve COVID-19 diagnosis via radiological chest X-ray (CXR) image analysis, making a substantial contribution to the development of a mobile application that efficiently identifies COVID-19, saving medical professionals time and resources. It also allows for timely preventative interventions by using more than 18000 CXR lung images and the MobileNetV2 convolutional neural network (CNN) architecture. The MobileNetV2 deep-learning model performances were evaluated

... Show More
View Publication
Scopus Crossref
Publication Date
Sun Jun 01 2014
Journal Name
International Journal Of Inventive Engineering And Science,
Increase the Capacity Amount of Data Hiding to Least Significant BIT Method
...Show More Authors

Publication Date
Tue Sep 01 2020
Journal Name
Journal Of Engineering
An Adaptive Digital Neural Network-Like-PID Control Law Design for Fuel Cell System Based on FPGA Technique
...Show More Authors

This paper proposes an on-line adaptive digital Proportional Integral Derivative (PID) control algorithm based on Field Programmable Gate Array (FPGA) for Proton Exchange Membrane Fuel Cell (PEMFC) Model. This research aims to design and implement Neural Network like a digital PID using FPGA in order to generate the best value of the hydrogen partial pressure action (PH2) to control the stack terminal output voltage of the (PEMFC) model during a variable load current applied. The on-line Particle Swarm Optimization (PSO) algorithm is used for finding and tuning the optimal value of the digital PID-NN controller (kp, ki, and kd) parameters that improve the dynamic behavior of the closed-loop digital control fue

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Mar 10 2025
Journal Name
Proceedings On Engineering Sciences
WAREHOUSE IN INDUSTRY 4.0 BASED DRONE, COMPUTER VISION, AND ARTIFICIAL INTELLIGENCE TECHNOLOGIES: A LITERATURE REVIEW
...Show More Authors

View Publication
Scopus (3)
Scopus Crossref
Publication Date
Sun Mar 07 2010
Journal Name
Baghdad Science Journal
Selection of highly ethanol productive yeast
...Show More Authors

Seventy five isolates of Saccharomyces cerevisiae were identified, they were isolated from different local sources which included decayed fruits and vegetables, vinegar, fermented pasta, baker yeast and an alcohol factory. Identification of isolates was carried out by cultural microscopical and biochemical tests. Ethanol sensitivity of the isolates showed that the minimal inhibitory concentration of the isolate (Sy18) was 16% and Lethal concentration was 17%. The isolate (Sy18) was most efficient as ethanol producer 9.36% (v/w). The ideal conditions to produce ethanol from Date syrup by yeast isolate, were evaluated, various temperatures, pH, Brix, incubation period and different levels of (NH4)2HP04. Maximum ethanol produced was 10

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Nov 01 2010
Journal Name
Journal Of Systems And Software
Development of Java based RFID application programmable interface for heterogeneous RFID system
...Show More Authors

View Publication
Scopus (7)
Crossref (4)
Scopus Clarivate Crossref