The drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the modeling part, a one-dimension mechanical earth model (1D MEM) parameters, drilling fluid properties, and rig- and bit-related parameters, were included as inputs. The optimizing process was then performed to propose the optimum drilling parameters to select the drilling bit that provides the maximum possible ROP. To achieve this, the corresponding mathematical function of the ANNs model was implemented in a procedure using the genetic algorithm (GA) to obtain operating parameters that lead to maximum ROP. The output will propose an optimal bit selection that provides the maximum ROP along with the best drilling parameters. The statistical analysis of the predicted bit types and optimum drilling parameters comparing the actual flied measured values showed a low root mean square error (RMSE), low average absolute percentage error (AAPE), and high correction coefficient (R2). The proposed methodology provides drilling engineers with more choices to determine the best-case scenario for planning and/or drilling future wells. Meanwhile, the newly developed model can be used in optimizing the drilling parameters, maximizing ROP, estimating the drilling time, and eventually reducing the total field development expenses.
Abstract
The research aims to identify the extent of the practice of social responsibility in accordance with the social dimension and diagnosis of constraints applied.
Find the problem represented by the Social Responsibility and obstacles facing application in Baghdad Municipality through their workers trends analysis.
The adoption of the statistical method to analyze the data and information gathering, and selected municipalities of Adhamiya and Kadhimiya deliberate manner applied as a state and municipal councils of both cities as representatives of the local community to be the subject of research and comparison between them to see the reality of soci
... Show MoreIn this work, a joint quadrature for numerical solution of the double integral is presented. This method is based on combining two rules of the same precision level to form a higher level of precision. Numerical results of the present method with a lower level of precision are presented and compared with those performed by the existing high-precision Gauss-Legendre five-point rule in two variables, which has the same functional evaluation. The efficiency of the proposed method is justified with numerical examples. From an application point of view, the determination of the center of gravity is a special consideration for the present scheme. Convergence analysis is demonstrated to validate the current method.
74 fanners were randomily selected from the Lc:ital. of 406 fanners using the Modern Irrigation System up to November , 2000 , for the purpose of wide adoptation of such system. Rcsults indicated according to the data which has been obtained and statistically analysed by the statistical package for the Social Sciences (SPSS) program showed that the majority of the farmers adopted this new system of irrigation due to the increase in the yield up to 5" .
Solar energy has significant advantages compared to conventional sources such as coal and natural gas, including no emissions, no need for fuel, and the potential for installation in a wide range of locations with access to sunlight. In this investigation, heterocyclic derivatives were synthesized from several porphyrin derivatives (4,4',4",4"'-(porphyrin-5,10,15,20-tetrayl) tetra benzoic acid) compound (3), obtained by reaction Pyrrole with 4-formyl benzoic acid. Subsequently, porphyrin derivative-component amides 5a, 5b, and 5c were produced by reacting compound (3) with amine derivatives at a 1:4 molar ratio. These derivatives exhibited varying sensitivities for utilization in solar cells, with compound 5a displaying the highest power
... Show MoreThis study was carried out to assess genetic diversity of ten cultivars of Rice (Oryza sativa L.). One of DNA markers based on Polymerase Chain Reaction (PCR) was used namely DAF markers (DNA Amplification Fingerprint). Six primers were tested, the results showed, that no amplification products using the primers OPD.14 and OPM.5. Two primers (OPX.8 and OPT.2) produced monomorphic band across all cultivars, while only two primers generated polymorphic bands. The number of total bands produced from one of them (OPN.7) were sixteen. Also this primer produced ten polymorphic profiles (DAF patterns) which were unique to the ten cultivars that could be distinguished. The number of total bands generated by primer OPX.1 were thirteen and this prim
... Show MoreThis research deals with a shrinking method concernes with the principal components similar to that one which used in the multiple regression “Least Absolute Shrinkage and Selection: LASS”. The goal here is to make an uncorrelated linear combinations from only a subset of explanatory variables that may have a multicollinearity problem instead taking the whole number say, (K) of them. This shrinkage will force some coefficients to equal zero, after making some restriction on them by some "tuning parameter" say, (t) which balances the bias and variance amount from side, and doesn't exceed the acceptable percent explained variance of these components. This had been shown by MSE criterion in the regression case and the percent explained v
... Show MoreMachine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a
... Show MoreAbstract
Binary polymer blend was prepared by mechanical mixing method of unsaturated polyester resin with Nitrile Butadiene Rubber (NBR) with different weight ratios (0, 5, 10 and 15) % of (NBR). Tensile characteristics and wear rates of these blends were studied for all mixing ratios. The microstructure of fracture surfaces of the prepared samples were investigated by optical microscope. The results were showed that strain rates of the resin material increase after blending it with rubber while the ultimate tensile strength and Young’s modulus values of it will decrease. It is also noticed that the wear rate of resin decreases with increasing of (NBR) content.
Keywords:<
... Show More