The insulation system of a machine coil includes several layers made of materials with different characteristics. The effective insulation design of machine coils, especially in the machine end winding, depends upon an accurate model of the stress grading system. This paper proposes a modeling approach to predict the transient overvoltage, electric field, and heat generation in machine coils with a stress grading system, considering the variation of physical properties in the insulation layers. A non-uniform line model is used to divide the coil in different segments based on material properties and lengths: overhang, stress grading and slot. The cascaded connection of chain matrices is used to connect segments for the representation of the complete machine coil. The resulting model is able to simulate the transient overvoltages due to the application of fast rise time pulses such as those observed with pulse width modulation from adjustable speed drives, considering coils with different insulation topologies and under pulses with different rise times. The parameters in each coil region are calculated using the finite element method (FEM). Additionally, the resistive heat and electric field distribution in the machine coil are calculated for excitations with different rise times by means of 3-dimensional FEM simulations.
Non-orthogonal Multiple Access (NOMA) is a multiple-access technique allowing multiusers to share the same communication resources, increasing spectral efficiency and throughput. NOMA has been shown to provide significant performance gains over orthogonal multiple access (OMA) regarding spectral efficiency and throughput. In this paper, two scenarios of NOMA are analyzed and simulated, involving two users and multiple users (four users) to evaluate NOMA's performance. The simulated results indicate that the achievable sum rate for the two users’ scenarios is 16.7 (bps/Hz), while for the multi-users scenario is 20.69 (bps/Hz) at transmitted power of 25 dBm. The BER for two users’ scenarios is 0.004202 and 0.001564 for
... Show MoreThe auditory system can suffer from exposure to loud noise and human health can be affected. Traffic noise is a primary contributor to noise pollution. To measure the noise levels, 3 variables were examined at 25 locations. It was found that the main factors that determine the increase in noise level are traffic volume, vehicle speed, and road functional class. The data have been taken during three different periods per day so that they represent and cover the traffic noise of the city during heavy traffic flow conditions. Analysis of traffic noise prediction was conducted using a simple linear regression model to accurately predict the equivalent continuous sound level. The difference between the predicted and the measured noise shows that
... Show MoreThis paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback
... Show MoreThe human kidney is one of the most important organs in the human body; it performs many functions
and has a great impact on the work of the rest of the organs. Among the most important possible treatments is
dialysis, which works as an external artificial kidney, and several studies have worked to enhance the
mechanism of dialysate flow and improve the permeability of its membrane. This study introduces a new
numerical model based on previous research discussing the variations in the concentrations of sodium,
potassium, and urea in the extracellular area in the blood during hemodialysis. We simulated the differential
equations related to mass transfer diffusion and we developed the model in MATLAB Simu