With the increasing reliance on microgrids as flexible and sustainable solutions for energy distribution, securing decentralized electricity grids requires robust cybersecurity strategies tailored to microgrid-specific vulnerabilities. The research paper focuses on enhancing detection capabilities and response times in the face of coordinated cyber threats in microgrid systems by implementing advanced technologies, thereby supporting decentralized operations while maintaining robust system performance in the presence of attacks. It utilizes advanced power engineering techniques to strengthen cybersecurity in modern power grids. A real-world CPS testbed was utilized to simulate the smart grid environment and analyze the impact of cyberattacks in real-time. Several types of cyberattacks were implemented, including a denial-of-service (DoS) attack, a Telnet attack on port 23, and attacks on the Modbus protocol via port 502. The results showed that the system lost complete communication with the Supervisory Control and Data Acquisition (SCADA) components after the attack, resulting in significant power surges and distortions in meter readings. The study provides a practical assessment of how smart infrastructure is affected by targeted attacks, emphasizing the importance of continuous monitoring and strengthening of sensitive protocols.
Hydrophobic silica aerogels were successfully preparation by an ambient pressure drying method from sodium silicate (Na2SiO3) with different pH values (5, 6, 7, 8, 9 and 10). In this study, acidic HCl (1M), a basic NH4OH (1M) were selected as a catalyst to perform the surface modification in a TMCS (trimethylchlorosilane) solution. The surface chemical modification of the aerogels was assured by the Fourier transform infrared (FTIR) spectroscopic studies. Other physical properties, such as pore volume and pore size and specific surface area were determined by Brunauer-Emmett- Teller (BET) method. The effect of pH values on the bulk density of aerogel. The sol–gel parameter pH value in the sol, have marked effects on the physical proper
... Show MoreThe physical, the thermal and the mechanical properties of Nano-composites, that consisted of Polyprime EP epoxy that reinforced by multi-walled carbon nanotubes (MWCNTs), have been studied. Various loading ratios, 0.1, 0.5, and 1 wt. %of MWCNT shave been infused into epoxy by a magnetic stirrer and then the hardener mixed with the mthat supplied with the epoxy. All sample shave been cutting using CNC machine. Tensile test, three-point bending, hardness tests, lee's disk, differential scanning calorimetry, water absorption and dielectric and electrical conductivity test were utilized on unfilled, MWCNT-filled epoxy to identify the loading effect on the properties of materials. Scanning electron microscopy (SEM) was used to determine the
... Show Moreيعد القلق من الكتابة مؤشرا هاما قد يعيق القدرات الكتابية ويؤدي إلى عدم كفاءة الأداء. تهدف هذه الدراسة إلى تقييم القلق الكتابي لدى طلاب السنة الرابعة في كلية التربية البدنية وعلوم الرياضة العراقيين دارسي اللغة الإنجليزية كلغة ثانية (ESL) , حيث واجهوا صعوبات وعقبات في هذا المجال. ان تصميم الدراسة الحالية هو تصميم وصفي واداة القياس لهذه الدراسة تتالف من مقياس مكون من (20) فقرة. ان عينة الدراسة الحالية مختارة
... Show MoreStone Matrix Asphalt (SMA) is a gap-graded asphalt concrete hot blend combining high-quality coarse aggregate with a rich asphalt cement content. This blend generates a stable paving combination with a powerful stone-on-stone skeleton that offers excellent durability and routing strength. The objectives of this work are: Studying the durability performance of stone matrix asphalt (SMA) mixture in terms of moisture damage and temperature susceptibility and Discovering the effect of stabilized additive (Fly Ash ) on the performance of stone matrix asphalt (SMA) mixture. In this investigation, the durability of stone matrix asphalt concrete was assessed in terms of temperature susceptibility, resistance to moisture damage, and sensitivity t
... Show MoreIn recent years, nano-modified asphalt has gained significant attraction from researchers in the design of asphalt pavement fields. The recently discovered Titanium dioxide nanoparticles (TiO2) are among the most exciting and promising nanomaterials. This study examines the effect of 1, 3, 5, and 7% of nano-TiO2 by weight of asphalt on some of its rheological and hardened properties. The experimental study included physical and rheological properties. The asphalt penetration, softening point, ductility, and rotational viscometer tests indicate that 5% nano-TiO2 is the ideal amount to be added to bitumen as a modifier. The
In this research study Hardness (shore D), Water absorption,
Flexural, Impact Test, and Fracture Toughness of polymer nano
composites. The polymer nano composites based on unsaturated
polyester resin reinforced with Kevlar fibers (K.F). The samples are
attended by hand lay – up method according to (Rule mixture) for
various volume fractions of unsaturated polyester resin, fiber and
carbon nanotube. The polyester resin was matrix strengthened with
3% volume fraction from Kevlar fiber and (0.5%, 1%, 1.5%, 2%)
volume fractions of carbon nanotube. The water absorption, hardness
(shore D), flexural test, impact test and toughness fracture properties
were studied. Results showed that the water absorption increas
During the last two decades, nanomaterial application has gained a significant attraction into asphalt technology due to their effect in enhancing asphalt binder improving the asphaltic mixture. This study will modify the asphalt binder with two different nano types, nano SiO2 and CaCO3, at levels ranging from 1% to 7%. The resulting optimum nano-modified Asphalt will be subject to a series of rheological tests, including dynamic shear rheometer (DSR), Viscosity, and bending beam rheometer (BBR) to determine asphalt binder sensitivity towards low-medium-high temperature range. Results indicate that both nano types improved the physical characteristics of Asphalt, and 5% by weight of Asphalt was suggested as a reasonable dosage of nano-SiO2
... Show MoreBackground: Polymethyl methacrylate (PMMA) is the most commonly used material in denture fabrication. The material is far from ideal in fulfilling the mechanical requirements, like low impact and transverse strength, poor thermal conductivity. The purpose of this study was to evaluate the effect of addition a composite of surface treated Nano Aluminum oxide (Al2O3) filler and plasma treated polypropylene fiber (PP) on some properties of denture base material. Materials and methods: One hundred fifty prepared specimens were divided into 5 groups according to the tests, each group consisted of 30 specimens and these were subdivided into 3 groups (unreinforced heat cured acrylic resin as control group),reinforced acrylic resin with( 0.5%wt Nan
... Show Moreيعتقد البعض ان مفهوم العلم يعني الآلات والاجهزة العلمية (تقنيات التعليم) وهي لا تختلف عن مفهوم تكنولوجيا المعلومات , ويعد هذا الاعتقاد خاطئ , لان العلم هو بناء المعرفة العلمية المنظمة والتي يتم التوصل اليها عن طريق البحث العلمي , اما تكنولوجيا المعلومات فهي "التطبيقات العملية للمعرفة العلمية في مختلف المجالات ذات الفائدة المباشرة بحياة الانسان, او هي النواحي التطبيقية للعلم وما يرتبط بها من آلات واجهزة".