To maintain the security and integrity of data, with the growth of the Internet and the increasing prevalence of transmission channels, it is necessary to strengthen security and develop several algorithms. The substitution scheme is the Playfair cipher. The traditional Playfair scheme uses a small 5*5 matrix containing only uppercase letters, making it vulnerable to hackers and cryptanalysis. In this study, a new encryption and decryption approach is proposed to enhance the resistance of the Playfair cipher. For this purpose, the development of symmetric cryptography based on shared secrets is desired. The proposed Playfair method uses a 5*5 keyword matrix for English and a 6*6 keyword matrix for Arabic to encrypt the alphabets of both languages.
Association rules mining (ARM) is a fundamental and widely used data mining technique to achieve useful information about data. The traditional ARM algorithms are degrading computation efficiency by mining too many association rules which are not appropriate for a given user. Recent research in (ARM) is investigating the use of metaheuristic algorithms which are looking for only a subset of high-quality rules. In this paper, a modified discrete cuckoo search algorithm for association rules mining DCS-ARM is proposed for this purpose. The effectiveness of our algorithm is tested against a set of well-known transactional databases. Results indicate that the proposed algorithm outperforms the existing metaheuristic methods.
Medical image segmentation is one of the most actively studied fields in the past few decades, as the development of modern imaging modalities such as magnetic resonance imaging (MRI) and computed tomography (CT), physicians and technicians nowadays have to process the increasing number and size of medical images. Therefore, efficient and accurate computational segmentation algorithms become necessary to extract the desired information from these large data sets. Moreover, sophisticated segmentation algorithms can help the physicians delineate better the anatomical structures presented in the input images, enhance the accuracy of medical diagnosis and facilitate the best treatment planning. Many of the proposed algorithms could perform w
... Show MoreText based-image clustering (TBIC) is an insufficient approach for clustering related web images. It is a challenging task to abstract the visual features of images with the support of textual information in a database. In content-based image clustering (CBIC), image data are clustered on the foundation of specific features like texture, colors, boundaries, shapes. In this paper, an effective CBIC) technique is presented, which uses texture and statistical features of the images. The statistical features or moments of colors (mean, skewness, standard deviation, kurtosis, and variance) are extracted from the images. These features are collected in a one dimension array, and then genetic algorithm (GA) is applied for image clustering.
... Show MoreHighly Modified Asphalt (HiMA) binders have garnered significant attention due to their superior resistance to rutting, fatigue cracking, and thermal distress under heavy traffic loads and extreme environmental conditions. While elastomeric polymers such as Styrene- Butadiene-Styrene (SBS) have been extensively used in HiMA applications, the potential of plastomeric polymers, including Polyethylene (PE) and Ethylene Vinyl Acetate (EVA), remains largely unexplored. This study aims to evaluate the performance of reference binder (RB) modified with plastomeric HiMA asphalt in comparison to SBS-modified binders and determine the optimal polymer dosage for achieving an optimal balance between rutting resistance and fatigue durability. The experi
... Show MoreSentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other l
... Show MoreContemporary researchers realized the importance of the title. Many researches and studies concerned in titles and their analyses on the structural, semantic and pragmatic levels have been developed. Title gives a vital assistance to control the text harmony and to understand its vague aspects. It is the axis which re-generates itself, grows, and re-produces itself; as if it were a head for a body.
Title has strong relation to the reader- waiting horizon, multiplies as many levels of understanding are there. The horizon of waiting is limited by the title, basically, to be the first reason for the text entrance, as the first thing attracts the reader is the title.
Approaching title scientifically and objectively is impossi
... Show MoreTo achieve safe security to transfer data from the sender to receiver, cryptography is one way that is used for such purposes. However, to increase the level of data security, DNA as a new term was introduced to cryptography. The DNA can be easily used to store and transfer the data, and it becomes an effective procedure for such aims and used to implement the computation. A new cryptography system is proposed, consisting of two phases: the encryption phase and the decryption phase. The encryption phase includes six steps, starting by converting plaintext to their equivalent ASCII values and converting them to binary values. After that, the binary values are converted to DNA characters and then converted to their equivalent complementary DN
... Show More