This study numerically intends to evaluate the effects of arc-shaped fins on the melting capability of a triplex-tube confinement system filled with phase-change materials (PCMs). In contrast to situations with no fins, where PCM exhibits relatively poor heat response, in this study, the thermal performance is modified using novel arc-shaped fins with various circular angles and orientations compared with traditional rectangular fins. Several inline and staggered layouts are also assessed to maximize the fin’s efficacy. The effect of the nearby natural convection is further investigated by adding a fin to the bottom of the heat-storage domain. Additionally, the Reynolds number and temperature of the heat-transfer fluid (HTF) are e
... Show MoreThis study reports on natural convection heat transfer in a square enclosure of length (L=20 cm) with a saturated porous medium (solid glass beads) having same fluid (air) at lower horizontal layer and free air fill in the rest of the cavity's space. The experimental work has been performed under the effects of heating from bottom by constant heat flux q=150,300,450,600 W/m2 for four porous layers thickness Hp (2.5,5,7.5,1) cm and three heaters length δ(20,14,7) cm. The top enclosure wall was good insulated and the two side walls were symmetrically cooled at constant temperature. Four layers of porous media with small porosity, Rayleigh number range (60.354 - 241.41) and (Da) 3.025x10-8 has been investigated. The obtained data of temperatu
... Show MoreThis study proposes a hybrid predictive maintenance framework that integrates the Kolmogorov-Arnold Network (KAN) with Short-Time Fourier Transform (STFT) for intelligent fault diagnosis in industrial rotating machinery. The method is designed to address challenges posed by non-linear and non-stationary vibration signals under varying operational conditions. Experimental validation using the FALEX multispecimen test bench demonstrated a high classification accuracy of 97.5%, outperforming traditional models such as SVM, Random Forest, and XGBoost. The approach maintained robust performance across dynamic load scenarios and noisy environments, with precision and recall exceeding 95%. Key contributions include a hardware-accelerated K
... Show MoreThe melting duration in the photovoltaic/phase-change material (PV/PCM) system is a crucial parameter for thermal energy management such that its improvement can realize better energy management in respect to thermal storage capabilities, thermal conditions, and the lifespan of PV modules. An innovative and efficient technique for improving the melting duration is the inclusion of an exterior metal foam layer in the PV/PCM system. For detailed investigations of utilizing different metal foam configurations in terms of their convective heat transfer coefficients, the present paper proposes a newly developed mathematical model for the PV/PCM–metal foam assembly that can readily be implemented with a wide range of operating condition
... Show MoreRefrigerant R134a has been widely utilized in automotive air conditioning systems (AACSs); R134a has a high global warming potential (GWP) of 1430 despite having zero ozone depletion potential (ODP). Coming refrigeration systems must include refrigerants with low GWP and zero ODP. The aim of this experimental study is to evaluate the thermal performance of an (AAC) with different values of compressor speeds, i.e., (1000, 1700, and 2400 rpm) and two thermal loads, i.e., (500 and 1000 Watt) with the absence and presence of liquid suction heat exchanger (LSHX) using R134a. The results showed that adding LSHX enhanced the COP cycle by 7.18%, 10.7%, and 3.09% for the first, second, and third speed, respectively, at 500 Watt, while the en
... Show MoreIn the presence of deep submicron noise, providing reliable and energy‐efficient network on‐chip operation is becoming a challenging objective. In this study, the authors propose a hybrid automatic repeat request (HARQ)‐based coding scheme that simultaneously reduces the crosstalk induced bus delay and provides multi‐bit error protection while achieving high‐energy savings. This is achieved by calculating two‐dimensional parities and duplicating all the bits, which provide single error correction and six errors detection. The error correction reduces the performance degradation caused by retransmissions, which when combined with voltage swing reduction, due to its high error detection, high‐energy savings are achieved. The res
... Show MoreEach sport has its own energy requirements that differ from the energy requirements of other sports, and a different method is used in each of them, so the trainer must first rely on the principle of privacy in training first, that is, privacy according to the working energy system, that is, he defines the controlling energy system In that event, and how the muscles use the available energy to perform according to the energy production systems. As we find the serving skill is the first volleyball skill with which the team starts the match in order to be able to gain points directly, through knowledge it turns out that there is a weakness in the skill performance, especially the skill of serving and being The key to victory for volle
... Show MoreAchieving reliable operation under the influence of deep-submicrometer noise sources including crosstalk noise at low voltage operation is a major challenge for network on chip links. In this paper, we propose a coding scheme that simultaneously addresses crosstalk effects on signal delay and detects up to seven random errors through wire duplication and simple parity checks calculated over the rows and columns of the two-dimensional data. This high error detection capability enables the reduction of operating voltage on the wire leading to energy saving. The results show that the proposed scheme reduces the energy consumption up to 53% as compared to other schemes at iso-reliability performance despite the increase in the overhead number o
... Show More