Preferred Language
Articles
/
eBb2j4oBVTCNdQwCD59g
An Efficient Mixture of Deep and Machine Learning Models for COVID-19 and Tuberculosis Detection Using X-Ray Images in Resource Limited Settings
...Show More Authors

Scopus Crossref
View Publication
Publication Date
Wed Feb 22 2023
Journal Name
Iraqi Journal Of Science
Rapid Direct Detection and Differentiation of Mycobacterium tuberculosis complex in Sputum by Real-Time PCR
...Show More Authors

Tuberculosis status as the second leading causes of significant morbidity and mortality from an infectious disease worldwide, after human immunodeficiency virus (HIV). Sample collection was conducted at the Institute of Chest and Respiratory Diseases/Baghdad Medical City in Baghdad. The collection interval was from August to October 2014, 629 suspected TB patients were examined during this period. The results revealed among total 629 specimens, 56 (8.9%) of the specimens were positive by direct examination and 573 (91.1%) negative specimens by smear microscopy. Fifty six DNA samples were extracted from positive ZN smears of sputum specimens and 40 samples from healthy persons (as control) were subjected to molecular diagnosis by real tim

... Show More
View Publication Preview PDF
Publication Date
Tue Jun 01 2021
Journal Name
Telkomnika (telecommunication Computing Electronics And Control)
An efficient method for stamps recognition using Haar wavelet sub-bands
...Show More Authors

View Publication
Scopus (3)
Scopus Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
The Prediction of COVID 19 Disease Using Feature Selection Techniques
...Show More Authors
Abstract<p>COVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in </p> ... Show More
View Publication Preview PDF
Scopus (31)
Crossref (24)
Scopus Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
3D scenes semantic segmentation using deep learning based Survey
...Show More Authors
Abstract<p>Semantic segmentation realization and understanding is a stringent task not just for computer vision but also in the researches of the sciences of earth, semantic segmentation decompose compound architectures in one elements, the most mutual object in a civil outside or inside senses must classified then reinforced with information meaning of all object, it’s a method for labeling and clustering point cloud automatically. Three dimensions natural scenes classification need a point cloud dataset to representation data format as input, many challenge appeared with working of 3d data like: little number, resolution and accurate of three Dimensional dataset . Deep learning now is the po</p> ... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Mon Jan 09 2023
Journal Name
2023 15th International Conference On Developments In Esystems Engineering (dese)
Deep Learning-Based Speech Enhancement Algorithm Using Charlier Transform
...Show More Authors

View Publication
Scopus (11)
Crossref (7)
Scopus Crossref
Publication Date
Thu Apr 01 2021
Journal Name
Pakistan Journal Of Statistics
Estimation intensity radiation of chest X-ray (CXR) with application
...Show More Authors

In this research we assumed that the number of emissions by time (𝑡) of radiation particles is distributed poisson distribution with parameter (𝑡), where  < 0 is the intensity of radiation. We conclude that the time of the first emission is distributed exponentially with parameter 𝜃, while the time of the k-th emission (𝑘 = 2,3,4, … . . ) is gamma distributed with parameters (𝑘, 𝜃), we used a real data to show that the Bayes estimator 𝜃 ∗ for 𝜃 is more efficient than 𝜃̂, the maximum likelihood estimator for 𝜃 by using the derived variances of both estimators as a statistical indicator for efficiency

Preview PDF
Scopus
Publication Date
Mon Jun 30 2025
Journal Name
Ingénierie Des Systèmes D Information
Comparative Analysis of Four Programming Languages for Machine Learning
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Mon Dec 25 2017
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Colorimetry and Indirect X-ray Fluorescence Determination of Active Ingredients in Tetracycline Hydrochloride Drug and Injection Solution of B12 Vitamin Using of Polyurethane Foam Sorbents
...Show More Authors

The simple and available technique of colorimetry and indirect X-ray fluorescence determination of tetracycline hydrochloride (in the form of colored complex with iron(III) ions) and cyanocobalamine (in the form of the colored thiocyanate complex with cobalt(II) ions) is offered. The analytes were separated from the accompanying components by sorption to polyurethane foam based on ethers. The conditions of sorption separation and measurement of analytical signal of these substances are optimized. The obtained results of tetracycline drugs and injection solution B12 vitamin are in satisfactory agreement with data declared by the manufacturer.

View Publication Preview PDF
Crossref
Publication Date
Fri Aug 13 2021
Journal Name
Neural Computing And Applications
Integration of extreme gradient boosting feature selection approach with machine learning models: application of weather relative humidity prediction
...Show More Authors

View Publication
Scopus (67)
Crossref (58)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science (ijeecs)
Increasing validation accuracy of a face mask detection by new deep learning model-based classification
...Show More Authors

During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve

... Show More
Crossref (4)
Crossref